The D-basis Algorithm for Association Rules of High Confidence

Main Article Content

Oren Segal, Justin Cabot-Miller, Kira Adaricheva, J.B.Nation


We develop a new approach for distributed computing of the association rules of high confidence on the attributes/columns of a binary table. It is derived from the D-basis algorithm developed by K.Adaricheva and J.B.Nation (Theoretical Computer Science, 2017), which runs multiple times on sub-tables of a given binary table, obtained by removing one or more rows. The sets of rules retrieved at these runs are then aggregated. This allows us to obtain a basis of association rules of high confidence, which can be used for ranking all attributes of the table with respect to a given fixed attribute. This paper focuses on some algorithmic details and the technical implementation of the new algorithm. Results are given for tests performed on random, synthetic and real data.

Article Details