Area and Power Efficient Fused Floating-point Dot Product Unit based on Radix-2r Multiplier & Pipeline Feedforward-Cutset-Free Carry-Lookahead Adder

Main Article Content

M. Madhu Babu, K. Rama Naidu


Fused floating point operations play a major role in many DSP applications to reduce operational area & power consumption. Radix-2r multiplier (using 7-bit encoder technique) & pipeline feedforward-cutset-free carry-lookahead  adder(PFCF-CLA) are used to enhance the traditional FDP unit. Pipeline concept is also infused into system to get the desired pipeline fused floating-point dot product (PFFDP) operations. Synthesis results are obtained using 60nm standard library with 1GHz clock. Power consumption of single & double precision operations are 2.24mW & 3.67mW respectively. The die areas are 27.48 mm2 , 46.72mm2 with an execution time of 1.91 ns , 2.07 ns for a single & double precision operations respectively. Comparison with previous data has also been performed. The area-delay product(ADP) & power-delay product(PDP) of our proposed architecture are 18%,22% & 27%,18% for single and double precision operations respectively.

Article Details