Three-Phase Three-Level Isolated DC-DC Soft Switching Converter For Solar Applications

Main Article Content

K.Girinath Babu, et. al.

Abstract

Three-level isolated DC-DC converter is an attractive topology in high input voltage applications, which can provide the voltage stress of the power devices to only a half of the dc voltage and also reduce the size of dc filter requirement. But major limitations in the existing three level ZVS converter topologies are brought out with an increased inductance in the primary side and it required to provide complete ZVS of all primary devices down to light loads. By employing an external inductance in the primary of the transformer, total leakage inductance of the transformer increases which is required for realization of soft switching of the converter switches but there are some disadvantages of connecting external inductance in the primary of the transformer. To overcome all these drawbacks, the     three-phase three-level isolated DC-DC soft switching converter has been proposed in order to reduce voltage and current stresses. This converter topology requires less number of control switches and operates with an asymmetrical duty cycle control. The proposed three level DC-DC converters provide two- level voltage waveform before dc output filter, which significantly reduce the size of dc output filter. The proposed work has been implemented using MATLAB/SIMULINK and the performance of the proposed converter is verified through simulation results.


 

Article Details

Section
Articles