
IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

1
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

SDN/NFV VNF Service Chaining

Dashmeet Anand, Hariharakumar Narasimhakumar, Rohit Kulkarni, Sarang Ninale, Levi Perigo, Dewang

Gedia, and Rahil Gandotra

Abstract— Service Function Chaining (SFC) is a

capability that links multiple network functions to

deploy end-to-end network services. By virtualizing

these network functions also known as Virtual

Network Functions (VNFs), the dependency on

traditional hardware can be removed, hence making

it easier to deploy dynamic service chains over the

cloud environment. Before implementing service

chains over a large scale, it is necessary to understand

the performance overhead created by each VNF

owing to their varied characteristics. This research

paper attempts to gain insights on the server and

networking overhead encountered when a service

chain is deployed on a cloud orchestration tool such as

OpenStack. Specifically, this research will measure

the CPU utilization, RAM usage and System Load of

the server hosting OpenStack. Each VNF will be

monitored for its varying performance parameters

when subjected to different kinds of traffic. Our focus

lies on acquiring performance parameters of the entire

system for different service chains and compare

throughput, latency, and VNF statistics of the virtual

network. Insights obtained from this research can be

used in the industry to achieve optimum performance

of hardware and network resources while deploying

service chains.

Keywords— Cloud Orchestration, OpenStack, Service

Function Chaining (SFC), Virtual Network Functions

(VNFs).

I. INTRODUCTION

rchestration of network functionalities for growing

networks demand greater flexibility than that offered

by current traditional networks. The requirement for

dynamicity in today’s networks and data centers that

house multi-tenant public/private infrastructures have

resulted in the adoption of Virtual Network Functions

(VNFs) [1]. Network Function Virtualization (NFV) is a
network architecture concept that decouples the software

of network functions from their hardware counterparts so

that they can be hosted on commodity hardware (servers)

to achieve an entirely virtualized

infrastructure [2]. Any network function software that

can be used as a standalone entity in the NFV framework

is known as a Virtual Network Function (VNF). As data

center architectures are moving towards virtualization,

VNF’s have become more popular as they provide

flexibility in design, reduce deployment time, and

optimize network resources. This results in reduced

Capital Expenditure (CAPEX) and Operational

Expenditure (OPEX) compared to their traditional
counterparts [3].

VNFs can provide standalone or coupled functionalities –

for instance, a VNF could provide routing capabilities

alongside firewall operations (such as Juniper VSRX

VNF [4]), but a few VNF’s in the market have limited

capabilities such as Network Address Translation (NAT)
provided by VyOS [5]. By chaining multiple such VNFs

together, the network administrator can tailor the

behavior of the network dynamically [20 - 26]. This

process is known as Service Chaining or Service

Function Chaining (SFC). SFC has therefore evolved as a

capability that uses Software Defined Network (SDN)

and Network Functions Virtualization (NFV) to construct

a chain of network services (such as Firewall, NAT, and

many more) [6].

This research makes use of OpenStack [7], an open

source platform for cloud orchestration deployment. It

offers capabilities to control large pools of compute,

storage and networking functionalities. The different

components of OpenStack that have been utilized in this

research are glance (image module), Neutron

(networking module), Nova (compute module) and

Horizon (OpenStack dashboard). The OpenStack along

with its compute node is used to host multiple VNFs and

the network node is used to bind the VNFs together in a

single service chain [8]. The neutron modules of the

OpenStack also allow routing the traffic end to end

within the OpenStack environment [9].

Even though the ability to connect these network

services is well known, existing research lacks

evaluation of the performance characteristics of chaining

multiple VNFs. This research study aims to understand

the various parameters that influence the underlying

limited hardware resources in the deployment of these

NFV/VNF Service chains. Our focus is to test the

operation and performance of service chains and

quantify the impact each VNF, and effectively the service

chain has on the server resource utilization and network

parameters.

O

IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

2
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

II. RELATED WORK

Traditionally, network functionalities such as

Network Address Translation (NAT), traffic filtering

firewall, packet inspection or manipulation, and

intrusion detection were implemented in the form of

hardware devices called middleboxes. These devices

offered new features, improved security, and improved
performance [10].

With the highly dynamic network requirements that exist

today, the deployment and operation of middleboxes

come at the expense of increased capital and operational

costs. To overcome this, Network Function

Virtualization (NFV) was a scalable software solution

that can virtualize the hardware middleboxes. The

concept of NFV was introduced to replace middleboxes

with commodity servers running software applications

that replicate a network function (VNF) [11].

VNFs have an advantage over their physical

counterparts (middleboxes) as they are easy to deploy,

modify and upgrade.

[12] showcases that the placement of VNFs is a complex

problem and decisions must be taken according to the

desired objective (such as maximized data rate, low

latency, etc.). Further investigation was suggested for

obtaining optimized performance using efficient

placement of VNFs in the service chain [12].

Since the advent of VNF based service chaining, research

has helped maximize the performance of the service

chain. Containers can be used to implement VNF service

chains and introduce less kernel overhead into the system

compared to virtual machines (VMs) [13]. However, the

focus of this research is to evaluate the performance of

VM based service chains using OpenStack cloud

orchestrator.

Prior work lacked experimental results on the defining

efficiency provided by the order of VNFs in a service

chain and quantitative analysis of its throughput and

performance characteristics. This research aims to fill this

gap in the literature.

III. METHODOLOGY

A. Overview

The research intends to test the functioning of a

service chain on a standalone server which houses

OpenStack. Traffic entered the host server from the

iPerf3 [14] client placed outside the host machine. The

underlying operating system on the host machine forced
the traffic into the SFC and finally pushed the traffic out

of the interface connected to the iPerf3 server.

B. Functionality:

Fig. 1 shows the functionality of the complete

infrastructure setup. “Traffic IN” serves as the client for
traffic generator. VNF 1,2,3,…x are different instances

that form the service chain deployed by OpenStack.

Finally, “Traffic Out” is the server for the traffic

generator. Traffic was sent from the client to the server.

In Fig. 1, traffic entered the server and was directed to the

service chain via a routing policy that matches the source

IP and incoming interface. Here, traffic entered VNF 1,

which operated on the data and directed it to VNF 2,

VNF 3, and so on to VNF

n. Traffic then left the service chain and consulted the

routing table of the host machine to get to the traffic

generator server.

Fig. 1. Functional Block Diagram.

C. The concept of Operations:

Fig. 2. Concept of Operation Bloack Diagram.

Fig. 2 shows an overview of the operational setup. The

traffic entered the service chain inside the host machine,

got processed by the chain, and reached the traffic sink.

The complete environment was monitored and

performance parameters were collected for monitoring

and further analysis.

D. Research Components:

The research was developed in the following phases.

1) Service Chain Implementation: OpenStack on a host

machine running Ubuntu operating system was used

for the deployment of the VNFs. Different images of

VNFs were gathered from the Open Source
community, VyOS as well as vendors such as Cisco

CSR and Juniper VSRX to test service chains.

IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

3
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

2) Monitoring, Storage, and Dashboard: Integration of

different databases are used for collection and

monitoring of parameters. Gnocchi [15] and

OpenStack – Ceilometer [16] is used to collect

metrics from the VNF’s. Prometheus [17]– Node

Exporter [18] is used for gathering server parameters
and Influxdb is used to gather other parameter values.

These data sources are then used by Grafana [19] –

Graphical dashboard to display the stats.

3) Traffic generator: iPerf3 server and client on

independent servers are deployed to push traffic

across the host machine. iPerf3 is an open source

utility and has multiple operations and flexibility in

designing the traffic type.

4) Traffic Flow/Networking: The traffic from the iPerf3

server and client shall enter the host machine’s

operating system’s networking components. Policy

based routing is used to force the traffic from the
interface into the OpenStack service chain. Each

VNF is deployed on virtual networks created within

OpenStack – Neutron.

Precautions were taken to ensure that service chains are

tested in a consistent environment and that there is

verification before the collected data is passed for any

inference. Since the research was implemented on

physical hardware, controlling variables in every test

was a challenge. The following sections describe the key

elements that verified the test results.

E. Testing Infrastructure Setup

The research kept the environment of the underlying

system consistent across test cases. This test is to verify

the status of the underlying infrastructure that will support

the testing of the service chain. Before implementing the

service chain and subjecting it to the network traffic, the

server parameters were gathered.

Initial testing of the server was done by a simple Python
program that gathered system resources. This baseline

information is necessary to determine the effect a service

chain would have on system resources. The program

gathered information from server metrics which include:

power state, temperature, RAM, memory, CPU type &

utilization and interface status. It continues to test the

connectivity of the source and destination (traffic

generator ends), prints the OpenStack version and checks

a basic operation by querying the image list from

OpenStack - Glance.

F. Implementing Service Chain

This test ensured that the service chain is

implemented successfully and that the traffic from the

host server is routed via the service chain before it is sent

out the exit interface.

Traffic entering the server interface needs to be forced

into the service chain using policy-based routing, and

then back out into the host servers routing plane. This test
ensured that the host server does not route traffic at its

networking layer i.e. it does not bypass the service chain

altogether.

Permitting ICMP traffic inside the service chain allowed

the traceroute application to gather the number of hops it

passes through before exiting the host server. Comparing

with the number of virtual networks deployed by Neutron,

flow of traffic across each node in OpenStack service

chain was confirmed.

G. Metric Collection

Variations in the performance parameters of different

VNFs are monitored and collected for future analysis.

VNF parameters are gathered using Ceilometer-Gnocchi,

Ubuntu server parameters using Prometheus-Node

Exporter, and network parameters from the output of

iPerf and ping commands. A data visualization tool

(Grafana) gathers up the data collected and represents it

in a graphical utility for improved understanding of the

service chain operation over time. The data is polled at

regular intervals and written into Gnocchi and

Prometheus databases. Host statistics and traffic
generators output are validated across the data stored in

the database to ensure data integrity. This was done

periodically during each test case to ensure correct data

was polled and stored in the server for references.

H. Reproducibility.

Finally, the data gathered from the tests needed to be re-

verified. A secondary server with a similar configuration

as the primary server is hosted in the test environment.

The above- mentioned test cases were executed in the

secondary server. The results obtained from the metric
collection test case is compared with the information

gathered from the primary server. If the results obtained

were within five percent margin, then the test can be

deemed successful.

Following sections contain the details of the hardware

setup deployed in the lab. Four servers were deployed:

two identical Host servers, one iPerf client and one iPerf

server.

I. Hardware

1) Host Servers: The research uses two identical servers

(Dell EMC Poweredge R430) for reproducibility of

test cases. Enlisting few specifications of Host

servers in table I.

IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

4
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

TABLE I. Host server specification

Feature Specifications

Processor Intel® Xeon® processor E5-2600

v4 product family

Memory 64GB

Storage 500GB SATA

Networking 4x1Gb Ethernet NIC’s

Quantity 2

2) Traffic Generator Servers: Deployed over two Ubuntu

Servers running iPerf3 software as traffic generators. Both

the server and Client have 1Gb Ethernet NICs.

J. Software

Operating Systems: Ubuntu 16.04 LTS was the Operating

Sytem for all servers.

1) Cloud Orchestration: OpenStack - Stable/Rocky version

was deployed on Host machines for orchestrating VNF

deployment. Gnocchi with Ceilometer was employed for

monitoring VNFs. OpenStack installation was done using

Devstack.

2) Traffic Generator: iPerf3 was selected as the traffic

generator for measuring throughput for the network. The

toolkit consists of a combined client/server program and

customizable options for traffic type. iPerf3 software is

relatively simpler and supports multiple parallel

connections.

3) Graphical Dashboard: Grafana was deployed to provide a

graphical dashboard for the collected metrics. The system

integrated with multiple types of databases and OpenStack.

It is an open source software and houses a customizable
dashboard.

4) Database Source: Gnocchi was used for OpenStack VNF

metric collection, Influxdb for storing data from program’s

output and Prometheus with the node-metric plugin for

host server’s stats collector.

This research intends to determine the most optimal

combination of service chain based on key performance

parameters such as CPU utilization, memory utilization,

load average, throughput and latency across the chain as
defined below:

1) CPU utilization: It is a measure of the number of tasks

handled by the CPU in terms of processor cycles.

Also, a task’s run time is proportional to the CPU

utilization of the host, thus directly affecting the

performance. CPU utilization is an important

parameter to monitor as it will show us how VNFs

behave when subjected to traffic.

2) Memory utilization: The amount of memory allocated

to processes to perform a set of tasks. We will be

monitoring memory usage to determine what memory

is being consumed by the VNFs to process the

incoming traffic.

3) Load average: It represents the load on a system over

various timestamps., for example, one minute and five

minutes. It is calculated as the sum of number of

processes being executed and the processes waiting for

the CPU. This parameter will tell us the system

behavior for longer durations.

4) Throughput: Throughput is the amount of actual data

passing through a link. We’ll measure throughput

across the service chain and compare it with the

capacity of the links.

5) Latency: The time taken by a packet to traverse to the

destination. We will evaluate latency as it essentially

signifies the network performance.

IV. RESULTS

A. Server CPU utilization: It was observed that with

each additional VNF (except VYOS NAT), the server

CPU utilization percentage increases by 8-12 when no

traffic is passed through the service chain. VYOS has
negligible effect on the server CPU utilization ,

followed by CSR (router) and VSRX (firewall) in

increasing order. Parallel TCP streams consume

highest CPU on the server, followed by UDP, and

finally TCP. The rate of increase in CPU utilization

decreases with the addition of each router when traffic

is passed through the service chain. The linear

inclination of CPU Utilization is shown in graph I.

IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

5
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

GRAPH I : Server CPU Utilization.

B. Server Memory utilization (RAM): Increases with

increase in the number of VNFs in the service chain

with no discernible pattern. Passing traffic through the

service chain has no effect on the memory utilization

of the server and is unaffected by the nature of traffic

as seen in graph II.

GRAPH II : Server Memory Utilization.

C. Latency: Increases with increase in the number of VNFs

in the service chain. No relation observed between the

type of VNF added and resulting latency. The Graph III

shows the service chain and the respective latency of

round-trip time in miliseconds observed across the

network.

GRAPH III : Latency.

D. Throughput: Highest throughput is obtained for UDP

traffic (and stays the same for every service chain),

followed by TCP trafffic and finally parallel TCP

streams as shown in graph IV. Throughput for all

traffic types (except UDP) decreases with increase in

the number of VNFs in the service chain. Throughput

loss per individual VNF was highest in VSRX

(firewall), followed by CSR (router), and then VYOS

(NAT).

GRAPH IV : Throughput.

E. VNF CPU utilization: VSRX (firewall) consumes

highest VNF CPU followed by CSR (router). For both

the above VNFs, CPU utilization remains constant

with each additional VNF and when traffic is passed

through the service chain. VYOS (NAT) CPU

utilization is negligible when no traffic is passed
through the service chain but increases when subjected

to traffic. Graph V shows the different VNF CPU

Utilization across different traffic types.

GRAPH V : VNF CPU Utilization.

F. Uncertainties: A few uncertainties were observed

when parameters such as server CPU load and UDP

datagram loss percentages were analyzed. There was

no relation to the number of VNFs and the varying

CPU load. No conclusion could be drawn from UDP

datagram loss results obtained for each service chain.

The graph VI shows the CPU load average calculated

per minute from the server with respect to different

service chain deployed and after subjecting to different

test scenarios. Graph VII shows the UDP datagram
loss percentage across different type of service chains

deployed over the test environment. Both the graphs

show inconclusive patterns.

IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

6
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

GRAPH VI : CPU Load.

GRAPH VII : UDP Datagram Loss.

V. CONCLUSION

The results are specific and dependent on the type of

research’s test environment. If the components of the test

environment change, there may be some variation in the

test results. However, the research analysis aims to

provide patterns that can help in understanding and

developing a rational behavior of the service chains with

respect to the parameters mentioned below.

CPU Utilization, Memory Utilization and CPU Load of

the server are directly affected by the type of VNFs, the

number of VNFs deployed and the type of traffic passed
through the service chain. All the above-mentioned

parameters increase with an increase in the number of

VNFs. Out of all the VNFs VSRX firewall requires the

highest CPU followed by Cisco CSR. TCP parallel

streams consume the most CPU amongst all the traffic

types. Memory Utilization increases only with the

addition of new VNF and remains constant thereafter.

Throughput loss is the highest when passed through

Juniper VSRX firewall. Additionally, lowest throughput

is observed in the case of TCP parallel streams followed

by UDP for most of the VNFs.

VI. FUTURE WORK

The research aims to help industry professionals to

gain an insight into the performances of different Service

Chains before deploying them onto the production

network. Following modifications can be made to
increase the scope of testing carried out in the research

and make the tests suited for different production

environments.

The designed testbed can be used to test various other

VNFs and service chains that were not a part of this

research. It can also be used to test service chains with

different vendor-specific implementations of OpenStack.

The research sets an example that can be replicated on

multi- node OpenStack services. The research architecture

will also be used to test service chain in different network
orchestrators other than OpenStack.

VII. REFERENCES

[1] R. Narayanan, V. Saxena, C. Tato, H. Nakamura, H.

Wang, B. Lei, S. Rao, “Finding an Efficient Virtual

Network Function Architecture for Next- Generation

Telecommunications Infrastructure”, [Online].

Available:https://www.intel.com/content/dam/www/pr

ogrammable/us/en/pdfs/literature/wp/wp-01273-

finding-an-efficient-virtual-network- function-
architecture.pdf. [Accessed: 02-Apr-2019]

[2] M. Mechtri, C. Ghribi, and D. Zeghlache, “A Scalable

Algorithm for the Placement of Service Function

Chains,” IEEE Transactions on Network and Service

Management, vol. 13, no. 3, pp. 533–546, 2016.

[3] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba and

O. C. M. B. Duarte, "Orchestrating Virtualized

Network Functions," in IEEE Transactions on

Network and Service Management, vol. 13, no. 4, pp.

725-739, Dec. 2016. doi:

10.1109/TNSM.2016.2569020
[4] Juniper Networks, “vSRX VIRTUAL FIREWALL”.

[Online].

Available:https://www.juniper.net/us/en/local/pdf/data

sheets/1000489- en.pdf. [Accessed: 02-Apr-2019].

[5] “VyOS - an Open Source Linux-based Network OS,”

VyOS. [Online]. Available: https://vyos.io/.

[Accessed: 03-Apr-2019].

[6] P. Quinn, T. Nadeau, and Ed, “Problem Statement for

Service Function Chaining,” RFC Editor, 01-Jan-

1970. [Online]. Available: https://www.rfc-

editor.org/info/rfc7498. [Accessed: 02-Apr-2019].

[7] O. Sefraoui, M. Aissaoui, and M. Eleuldj,
“OpenStack: Toward an Open- source Solution for

Cloud Computing,” International Journal of Computer

Applications, vol. 55, no. 3, pp. 38–42, 2012.

IT in Industry, vol. 8, no.1, 2020 Published online 01-April-2020

7
Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

[8] “OpenStack Compute (nova)” OpenStack Docs:

OpenStack Compute (nova). [Online]. Available:

https://docs.openstack.org/nova/rocky/. [Accessed:

02-Apr-2019].

[9] “Welcome to Neutron's documentation!” OpenStack

Docs: Welcome to Neutron's documentation!
[Online]. Available:

https://docs.openstack.org/neutron/rocky/.

[Accessed: 02-Apr-2019].

[10] B. Carpenter, “Middleboxes: Taxonomy and Issues”,

Ietf.org, 2002, [Online]. Available:

https://tools.ietf.org/html/rfc3234. [Accessed: 02-

Apr-2019]

[11] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R.

Boutaba, “On Orchestrating Virtual Network

Functions in NFV”, Arxiv.org, 2015. [Online].

Available: https://arxiv.org/pdf/1503.06377.pdf.

[Accessed: 02-Apr-2019]
[12] S. Mehraghdam, M. Keller, H. Karl, “Specifying and

placing chains of virtual network functions - IEEE

Conference Publication”, Doi.org, 2014. [Online].

Available:

https://doi.org/10.1109/CloudNet.2014.6968961.

[Accessed: 02-Apr-2019]

[13] S. Livi, Q. Jacquemart, D. L. Pacheco, G. Urvoy-

Keller, "Container-Based Service Chaining: A

Performance Perspective - IEEE Conference

Publication", Doi.org, 2016. [Online]. Available:

https://doi.org/10.1109/CloudNet.2016.51.
[Accessed: 02-Apr-2019]

[14] V. GUEANT, “iPerf - The ultimate speed test tool

for TCP, UDP and SCTPTest the limits of your

network Internet neutrality test,” iPerf.fr. [Online].

Available: https://iperf.fr/. [Accessed: 03-Apr-

2019].

[15] “Gnocchi – Metric as a Service” Gnocchi – Metric as

a Service - Gnocchi 4.2.1.dev96 documentation.

[Online]. Available: https://gnocchi.xyz/. [Accessed:

03-Apr-2019].
[16] “Welcome to Ceilometer's documentation!¶,”

OpenStack Docs: Welcome to Ceilometer's

documentation! [Online]. Available:

https://docs.openstack.org/ceilometer/latest/.

[Accessed: 03-Apr-2019].

[17] Prometheus, “From metrics to insight,” Prometheus

Blog. [Online]. Available: https://prometheus.io/.

[Accessed: 03-Apr-2019].

[18] Prometheus, “Monitoring Linux host metrics with the

Node Exporter,” Prometheus Blog. [Online].

Available: https://prometheus.io/docs/guides/node-

exporter/. [Accessed: 03-Apr-2019].
[19] “Grafana - The open platform for analytics and

monitoring,” Grafana Labs. [Online]. Available:

https://grafana.com/. [Accessed: 03-Apr-2019].

[20] D. Gedia, and L. Perigo, “NetO-App: A Network

Orchestration Application for Centralized Network

Management in Small Business Networks,” CSITY,

DTMN, NWCOM, SIGPRO – 2018, pp. 61–72.

[21] D. Gedia, and L. Perigo, “A Centralized Network

Management Application for Academia and Small
Business Networks,” IT in Industry (ITII), vol. 6,

no.3, Aug. 2018.

[22] D. Gedia, and L. Perigo, “Latency-aware, Static, and

Dynamic Decision-Tree Placement Algorithm for

Containerized SDN-VNF in OpenFlow

Architectures”, in 2019 IEEE Conference on

Network Function Virtualization and Software

Defined Networks. IEEE, Nov, 2019, Dallas, TX.

[23] R. Gandotra, and L. Perigo, “SDNMA: A Software-

defined, Dynamic Network Manipulation

Application to Enhance BGP Functionality” in 20th

IEEE International Conference on High
Performance Computing and Communications

(HPCC-2018), June, 2018.

[24] D. Gedia, and L. Perigo, “Performance Evaluation of

SDN-VNF in Virtual Machine and Container”, in

2018 IEEE Conference on Network Function

Virtualization and Software Defined Networks

(NFV-SDN). IEEE, Nov, 2018, Verona, Italy.

[25] A. Jain et al., “Trend-Based Networking Driven by

Big Data Telemetry for SDN and Traditional

Networks,” International Journal of Next-

Generation Networks (IJNGN), vol. 11, no. 1, 2019.
[26] M. Jain, S. Suneja, S. Srivatsa, V.

Ananthasubramanian, Y. Maramraj, L. Perigo, R.

Gandotra, and D. Gedia, “Intent-Based, Voice-

Assisted, Self-Healing SDN Framework,” Journal of

Network Communications and Emerging

Technologies (JNCET), Vol. 10, Issue 2, Feb., 2020.

