
IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

8

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

Constraints Based Heuristic Approach for Task

Offloading In Mobile Cloud Computing

Raj Kumari and Sakshi Kaushal

Abstract— Mobile devices are supporting a wide range

of applications irrespective of their configuration.

There is a need to make the mobile applications

executable on mobile devices without concern of

battery life. For optimizing mobile applications

computational offloading is highly preferred. It helps

to overcome the severity of scarce resources constraint

mobile devices. In offloading, which part of the

application to be offloaded, on which processor and

what is available bandwidth rate are the main crucial

issues. As subtasks of mobile applications are

interdependent, efficient execution of application

requires research of favorable wireless network

conditions before to take the offloading decision.

Broadly in mobile cloud computing the applications is

either delay sensitive or delay tolerant. For delay

sensitive applications completion time has the highest

priority whereas for delay tolerant type of applications

depending on the network conditions decision of

offloading can be taken. Sometimes, computation time

on a cloud server is less but it consumes high

communication time which ultimately gives inefficient

offloading results. To address this issue, we have

proposed a heuristic based level wise task offloading

(HTLO). It includes computation time,

communication time and maximum energy available

on the mobile device to take the decision of offloading.

For simulation study, a mobile application is

considered as a directed graph and all the tasks are

executed on the basis of their levels. The overall results

of the proposed heuristic approach are compared with

state-of-the-art K-M LARAC algorithm and results

show the improvement in execution time,

communication time, mobile device energy

consumption and total energy consumption.

Keywords— mobile cloud computing, offloading,

heuristic, optimization, K-M LARAC.

I. INTRODUCTION

owadays mobile devices have become the necessity

of modern life. People prefer to execute numerous

applications like web browsing, face recognition,

Raj Kumari is with the University Institute of Engineering and

Technology,Panjab University, Chandigarh, India

Dr. Sakshi, is with the University Institute of Engineering and
Technology,Panjab University, Chandigarh, India

watching videos, online games and many others[1] [2] on

mobile devices. These applications are computation

intensive and require high processing speed and storage

capacity. As mobile devices are resource constraint and

battery operated, the concept of mobile cloud computing

(MCC) is used to execute these mobile applications[3][4].

All these applications are executed on mobile devices on

the stake of battery life. Longer battery life is the priority

of all mobile users. MCC integrates the capabilities of

cloud computing [5] into the mobile environment and

overcomes the problem of resource constraints of the

mobile devices. MCC technique executes the mobile

application on the cloud server and extends the battery

life of the mobile devices.

Now, to execute the mobile applications efficiently with

respect to time, energy and cost computation offloading is

used [6][7]. Computation offloading improves the

performance and reduces the local execution cost through

migrating heavy computation tasks to the cloud

servers[8]. The use of computation offloading requires

high research regarding characteristics of the application

i.e. whether the application is computation intensive or

communication intensive[9][10]. In some research papers,

applications are refer to as delay sensitive or delay

tolerant [11][12][13]. For delay, sensitive applications

completion time has the highest priority whereas for delay

tolerant type of applications depending on the network

conditions decision of offloading can be taken. Therefore,

it is very important to make the balance between

communication and computation during offloading. There

are many factors which affect the efficiency of offloading

in the MCC environment. Availability of bandwidth rate

between the cloud server and mobile device is the main

factor which affects the offloading [14]. The internal

behavior of the application must be checked before to do

the computation offloading. If the application consists of

high dependency among the tasks then communication

cost may lead towards the inefficient offloading. In such

cases, communication overhead is high than the

computation overhead. In this paper, we proposed a

heuristic approach for level-wise task offloading

algorithm. The proposed algorithm aims to reduce the

communication overhead of delay sensitive applications.

The objective of the proposed work is to minimize the

completion time of the application such that overall

completion time is within the deadline and maximum

available energy. In the K-M LARAC algorithm [15], the

N

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

9

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

tasks are offloaded with the main objective function to

minimize the financial cost. In this algorithm, the shortest

path of the task graph is selected using the Dijkstra

algorithm. If the path satisfies the financial cost constraint

then the solution is cost optimized and if it satisfies the

energy or deadline constraint then with respect to that

constraint solution is optimized. But in our approach, the

solution of offloading satisfies the deadline and energy

constraint. The performance of the proposed HLTO

algorithm is compared with the K-M LARAC algorithm

with respect to execution time, communication time,

energy consumption on the mobile device and overall

energy consumption of the application. The results show

high performance as compared to the K-M LARAC

algorithm. The existing algorithm concentrates on the

shortest path of the application which sometimes does not

fulfil the constraints of deadline and energy consumption.

To overcome this problem, we have proposed a heuristic

approach based level-wise task offloading. This results in

reducing the communication overhead and completes the

application within the deadline and energy constraint. The

contributions of the proposed work can be summarised as

follows:

 The objective function is formulated as a cost

minimization function by considering the overall

execution time and energy consumption within the

deadline and maximum available energy respectively.

 To reduce the communication time for the delay

sensitive applications, the level wise task offloading

technique is used.

 We proposed a heuristic approach for taking the

offloading decision between the mobile device and the

cloud server.

 Experimental results show the better performance of

the proposed work than the existing algorithm for the

delay sensitive applications.

The rest of the paper is structured as follows. Section 2

explores the factors that influence application

performance and offloading. It also introduces the

existing work on application offloading. Section 3

describes system and computation model. Section 4

illustrates the heuristic approach for level-wise task

offloading. Section 5 presents the experimental setup,

evaluation, and analysis of the results. Discussion on the

proposed work is presented in section 6. Finally, section 7

concludes the work and highlights future directions.

I. PROCEDURE FOR PAPER SUBMISSION

Partitioning of mobile application into computation

intensive and non-computation is a big research area in

the field of mobile cloud computing. After partitioning,

computation offloading of an application is also a

complex task[16][17][18][19]. Offloading efficiency

depends on many parameters like dynamic network

conditions, characteristics of the mobile application,

processing efficiency of mobile devices and services of

the cloud server. A heuristic algorithm that can find a

solution for the offloading problem is discussed in [15]. In

the algorithm, the best solution for offloading is

equivalent to finding the constrained shortest path in the

task graph. In [20] two algorithms have been proposed for

the offloading problem between mobile device and cloud

data center. The results show the minimum offloading

time for mobile device and the minimum execution time

for the cloud data center. Simulation study shows the

minimization in total execution time as well as reduction

in energy consumption.

The genetic algorithm is proposed in [21] for service

workflows, mobility-enabled and fault-tolerance

offloading system. In this paper, the issue of connectivity

of mobile networks with portable devices is considered

for offloading. The near-optimal solutions have been

witnessed with regard to the problem size. A Mobile

Application’s Offloading (MAO) algorithm is proposed in

[18] which considered CPU load and battery life. They

considered various interactive and delay tolerant mobile

applications for experimental work. Results show the

significant energy gain by offloading some applications to

remote server. A novel offloading algorithm called

dynamic programming with hamming distance

termination is presented in [22]. The algorithm aims to

good solutions with low computational overhead. When

the network transmission bandwidth is high, the algorithm

offloads the as many as possible tasks to the cloud. This

improves the total execution time and extends the energy

of the mobile device.

The authors in [19] proposed a stable method to

effectively and dynamically partition a given application

into local and remote parts called l min-cost offloading

partitioning algorithm. It significantly reduces execution

time and energy consumption by optimally distributing

tasks between mobile devices and cloud servers.

Cost and time constraint task partitioning and offloading

algorithm, multi-site task scheduling algorithm based on

teaching, learning-based optimization and the energy

saving on multi-sites using DVS technique is proposed in

[23]. The algorithms deal with the trade-off between time

and cost for the task partitioning, offloading and time

efficient scheduling on multi-sites.

A health care application model is developed in [24]. This

model categorises the data into normal, critical and super

critical. This model helps to process the patient's data

efficiently in terms of aggregation efficiency, end-to-end

delay, and total transmission time. An offloading

technique for contextual network conditions are used in

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

10

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

deciding whether to offload to the cloud or not is

proposed in [25]. Depending on the the current network

conditions, the proposed model takes the decision for

offloading. The concept of delayed offloading is also

implemented for energy saving when network conditions

are not good.

Factors affecting the energy consumption of mobile

clients is discussed in [26].They discussed the the balance

between local and remote computing for mobile devices.

Also showed the impact of trade-offs among the data

communication patterns, technologies used and

workload.A computation offloading scheme on handheld

devices is presented in [17]. They used clustering to

handle the program partitioning and execution. Results

showed the improvement in energy consumption and

performance through computation offloading. To extend

the battery life for portable computers through offloading

is presented in [16]. They considered the execution time

of the program. If the program can be executed within the

time limit than there is no offloading, otherwise program

is offloaded to the server. Results showed the significant

improvement in energy saving. An android and Hadoop

based prototype 'Phone Cloud' is developed in [27] for

energy saving on smartphones. It offloads the

computation of an application running on smartphones to

the cloud. The focus is to improve the energy efficiency

of smartphones as well as improves the application's

performance through reducing its execution time. A

queueing model is used to minimize a weighted sum of

energy consumption in [28]. An analytical model in

MCIoT environment is discussed in [29]. They focused

on the suitable partition rate for the application as well as

considered network parameters that affect the

performance of the application. The appropriate partition

rate effects execution time and energy consumption on

smart mobile devices and on the cloud.

In [30], focus on the real-time video applications that

have stringent delay and bandwidth constraints. Paper

discussed the performance and energy efficiency of

representative mobile cloud applications under dynamic

wireless network channels. Developed a generic model

for energy-efficient computation offloading for real-time

video applications. A comparative experimental study has

been presented in [31] to compare the rate of energy

consumption and total execution time in mobile cloud

computing and local devices.

The previous work on energy efficient mobile cloud

offloading, no application is partitioned and offloaded on

the basis of levels. The motive of this paper is to reduce

the communication overhead (due to dependency among

the tasks in an application) as well as completion of

execution of the application within the deadline and

available maximum energy.

III. SYSTEM AND COMPUTATION MODEL

To make the system energy and time efficient the

communication and computation models play a key role

in mobile cloud computing, therefore this section gives

the introduction about the communication model,

computation models and proposed methodology in detail.

A. Application model

An application is assumed to be consists of dependent

tasks and implemented by the directed acyclic graph

(DAG) [32]. The DAG,G = (T,E,P) , where T is the set of

tasks to be processed, is the set of edges indicating the

precedence constraints between the tasks and P is the set

of P processors. CTi,j is the computation time of task i on

processor j. It is assumed that Ti is the parent task of Tj,

and Tj cannot be executed until its parent task (Ti) is not

executed completely. A task with no predecessors is

called an entry task (Tentry), while the task with no

successors is known to be exit task (Texit) as shown in Fig.

2.

B. Computation Model

The computation time (CPi) of a task ti on a processor

pj is calculated using the length of the task (Leni,

Millions of instructions per second) and capacity of the

processor (Capj) to execute the number of instructions per

unit time[33]. Computation time for task i is expressed as

CPi =
Leni

Capj
 (1)

The computation time of all the tasks on the level l is

derived as

where i is the number of tasks on the lth level.

C. Communication Model

In communication time, output data produced by the

parent level (outputfilesize) and bandwidth (BW) between

the two processors Pi and Pj on which the tasks are

scheduled can be expressed as

CTl =
outputfilesize

BW
 (3)

Communication time (CTl) is the time of transferring the

data from parent level i to child level j is considered only

if both the levels are scheduled on different processors.

Further, ifparent and child level are processed on the same

processor then, CTi,j = 0. In Fig. 2, the value showed on

the edges is the communication time.

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

11

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

The overall execution time of lth level is the summation

of computation time of lth level and communication time

can be expressed as

ETl = CTl +TTl (4)

D. Energy Model

The task execution can have two types of energy

consumption. One is dynamic energy dissipation

(Energydynamic) while the other one is static energy

dissipation (Energystatic). The dynamic power dissipation

(Powerdynamic) is considered to be one of the main factors

of energy consumption. The is related to the voltage (v)

and frequency (f) as calculated as

Powerdynamic = k * v2 * f (5)

where k is the effective switched capacitance depending

on the chip architecture. We set k = 10-11 that energy

consumption is consistent with the measurements in [26].

The energy consumption for the mobile device can be

determined as

ECl,m = Powerdynamic * TTl (6)

The energy consumption for cloud server can be

determined as

ECl,c = Powerdynamic * ETl (7)

where i is the number of tasks on the lth level.

Using execution time and energy consumption, the cost

for a mobile device can be defined as

cost l,m = a1TTl + a2 EC l,m (8)

where a1 and a2 are weights of total execution time and

energy consumption. The value of a1 and a2 should be

greater than or equal to zero and less than or equal to 1

(0 ≤ a1 ≤ 1 and 0 ≤ a2 ≤ 1) We assume that a1 + a2 =1.

Similarly, the cost for cloud server execution is expressed

as

cost l,c = b1ETl + b2 EC l,c (9)

where b1 and b2 are weights of total execution time

and energy consumption. The value of b1 and b2 should

be greater than or equal to zero and less than or equal to 1

(0 ≤ b1 ≤ 1 and 0 ≤ b2 ≤ 1) . We assume that b1 + b2 =1.

The value of a1 and a2 can be adjusted as per the

availability of resources on the mobile device. The value

of b1 and b2 can be adjusted as per the communication

time and computation time on the cloud server.

E. Proposed Methodology

As discussed in literature work, the offloading is

mainly exploited on task basis. Consequently, there is an

increase in communication overhead during the

offloading. To address this issue, in this work, the

offloading scheme is based on level wise offloading of the

application instead of task basis. A novel algorithm

namely, HLTO is proposed and developed for improving

the energy efficiency of the mobile application. The

motive behind the proposed HTLO algorithm is to reduce

the communication overhead, which in turn reduces the

overall execution time and energy consumption of the

application. The flowchart of the proposed algorithm is

shown in Fig. 1. Initially, information regarding the

number of levels and tasks per level is collected. Then,

the value of deadline (D) and maximum available energy

(E) is set according to the available resources on the

mobile device and network conditions in MCC

environment. Next, the value of execution time,

communication time and energy consumption on the

mobile device and cloud server are calculated using Eq.

(1) to Eq. (7) as discussed below. Now, these values are

checked against the objective function in Eq. (11) and the

decision of offloading is taken.

Fig. 1. The flowchart of the proposed offloading scheme

IV. PROBLEM FORMULATION

The total energy-efficiency cost with respect to level l

at mobile device and cloud server execution can be given

by

cost l = w1costl,c + (1 – wl) cost l,m (10)

where wl donates the offloading selection factor making a

decision on a mobile device or cloud server. For an

application with the set of dependent tasks with L levels

as {1, 2…l}, we aim to provide an optimal solution w=

{ w1,w2..wl } to achieve the minimum energy efficiency

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

12

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

cost. Thus, the objective of the proposed work is the

mapping of the application's subtasks to the available

processors i.e., between the mobile device processor and

cloud server with minimum energy efficiency cost. The

energy efficiency cost minimization problem can be

formulated as:

𝑚𝑖𝑛 ∑ 𝑐𝑜𝑠𝑡𝑖
𝐿
𝑖=1 (11)

Such that the following constraints should be satisfied:

(1) Time constraint:

 ∑ 𝑤𝑖(𝐸𝑇𝐶)𝐿
𝑖=1 + (1 − 𝑤𝑖)(𝐸𝑇𝑚) ≤ 𝐷 (12)

(2) Energy constraint:

 ∑ 𝑤𝑖(𝐸𝐶𝐶)𝐿
𝑖=1 + (1 − 𝑤𝑖)(𝐸𝐶𝑚) ≤ 𝐸 (13)

(3) Selection constraint:

𝑤𝑖 ∈ {0, 1} (14)

The time constraint (12) implied that the total completion

time of all the levels should be less than or equal to the

deadline D. The deadline of an application is the

maximum time required to complete its execution. The

energy constraint (13) reflects that the energy

consumption of all the levels should be less than or equal

to the maximum available energy E. The selection

constraint wi specifies whether leveli is processed on the

cloud or on the mobile device.

The objective function in (11) with respect to selection

strategy wl can be expressed into the following form:

min wi w1costl.c + (1 – wl)costl,m (15)

If costl.c > costl,m then set the value of w1 =0 as a

result minimum of (15) will be achieved. Otherwise

reverse is true with w1=1. The offloading strategy means

when the cost of processing on the cloud is less than the

mobile device then the level is offloaded to the cloud

server. In (15) the value of w1 is selected according to the

characteristics of the mobile application.

In this paper, we have considered two types of mobile

applications i.e., delay sensitive and delay tolerant

applications. For delay sensitive applications the value of

deadline is hard. The overall completion time of the

application should be within the deadline whereas in

delay tolerant application the completion time is kept soft.

On the basis of these assumptions, the value of w1 is

decided. In Table 1, some examples of some delay

sensitive applications are represented[34].

In Fig. 2, applications graph are represented with less

inter task dependency to high inter task dependency. As

the inter dependency among the tasks increases the delay

sensitive of the application increases.

Table I. Delay Sensitive Applications
Application name Delay sensitivity

File transfer Low

Web traffic Moderate

Transaction based Moderate

Voice over IP High

Video conferencing High

Gaming High

A. The heuristic approach based level-wise task

offloading

In this section, the proposed heuristic based level wise

task offloading (HLTO) approach is presented. It focuses

on efficient execution of an application on cloud server or

on mobile device such that overall execution time and

energy consumption lies within the deadline and

maximum available energy. The processing capabilities of

the mobile device are slower than the processing

capabilities of the server on the cloud and hence the

computation time on mobile device is higher than the

computation time on the cloud server. In Table 2,

processor 1 and processor 2 are assumed to be on mobile

device and cloud respectively. As the availability of

resources on the mobile device is high, it can execute

more levels in a graph. In Algorithm 1, the pseudo code

of HLTO is explained. Initially, for each level, the

number of tasks is entered (line 1- line 3). Then, the level

wise execution time of the tasks and energy consumption

is calculated on mobile device and cloud server (line 7).

The overall cost on the cloud server and on the mobile

device is calculated (line 8). To minimize the objective

function in Eq. (11), the cost of the cloud server and the

mobile device is compared (line 9). If the cost of

computation on the cloud is less than the mobile device

than the level is offloaded to the cloud server and

weighting factor w1 is set to 0 otherwise reverse is true

(line 9 –line 12). The time complexity of the algorithm is

0 (n * log n)where log n is the time taken to process the

levels and n is the time taken to process the number of

tasks on each level.

Algorithm 1 Heuristic approach for level-wise task

 offloading (HLTO)

Input: number of levels, E, D

Output: optimal application execution policy within the
deadline

D and energy E
1.
2. a[k]= enter the number of tasks on each level

3. end for

4. Initialize k=1

5. for i=1 to L

6. while j<=a[k]

7. compute ,, by (1)-(7) respectively

8. compute by (8)-(9) respectively

9. if

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

13

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

10.
11. Else

12.
13. end if

14. a[k]++

15. end while

16. end for

B. Numeric Example

To prove the efficiency of HLTO algorithm against K-

M LARAC algorithm, we have considered an application

having eight subtasks as shown in Fig.2. Processing time

with respect to mobile device and cloud server is shown

in Table 2. As per the K-M LARAC algorithm, the

shortest path of the graph is 1, 4, 6 and 8. The tasks in the

shortest path are being processed on the mobile device.

While the remaining tasks are processed on the cloud

server. As per the K-M LARAC algorithm, tasks on the

shortest path (1, 4, 6 and 8) are processed on the mobile

device. However, the remaining tasks (2, 3, 5 and 7) are

offloaded to the cloud server for processing. The

communication time is being added to the tasks if its

parent task is processed on different processor. As task 1

is chosen to be processed on the mobile device. So, the

communication time is added with the computation time

for tasks 2 and 3, as they are children of task1 and are

processed on the cloud server. For task 2, communication

time (7 units) is added to its computation time (10 units).

Therefore, the total time to process the task 2 on the cloud

is 17 units. Similarly, total time of the remaining tasks is

calculated for the existing algorithm. The total time for

this graph is 251. On the other hand, as per the HLTO

algorithm, level two is assumed to be executed on the

mobile device and the rest of the levels are offloaded to

the cloud. As per the availability of the resources on the

mobile device, the maximum available energy value (E)

of the mobile device can be adjusted. According to our

approach, level one is on cloud and communication and

computation time is 48, level two is on mobile device,

therefore, communication and computation time is 58,

level three and four is on cloud and communication and

computation time is 58 and 14, respectively. The total

communication and computation time is 178 which are

better than the K-M LARAC approach.

Table 2. Computation Time (S)

V. SIMULATION RESULTS

In this section, we have evaluated the performance of

the HLTO algorithm in comparison with K-M LARAC

algorithm. The experimental environment for the

proposed algorithm consists of Intel(R) Core i7-4702MQ

CPU 2.20 GHz, 16 GB RAM and implemented in

MATLAB R20015. The five random graphs with 8, 16,

20, 24, and 27 tasks are generated in this environment as

shown in Fig. 2. The vertex and edges weights are

Gaussian distributed with assigned means. The processing

speed of the mobile device is lower than the cloud server.

The comparison metrics of the K-M LARAC algorithm

and HLTO algorithm are: (i) execution time (ii)

communication time (iii) mobile device energy

consumption(iv) total energy consumption of the

application.

A. Execution time

Fig. 3 shows the execution time of the mobile

application. As per the K-M LARAC algorithm, the tasks

under the shortest path are executed on the mobile device

and the rest of the tasks are offloaded on the cloud. As

shown in Fig. 2, the shortest path for the 12 node graph is

1,4,8,11,12, for the 16 node graph is 1, 3, 10, 14, 16, for

the 20 node graph is 1, 2, 9, 15, 20, for the 24 node graph

is 1, 7, 17, 23, 24 and for the 27 node graph is 1, 4, 14, 25,

27. According to this, the execution time, communication

time and energy consumption of an application are high in

K-M LARAC algorithm as compared to the HLTO

algorithm. As per the existing algorithm, the selected path

of the graph which satisfies either time, cost or energy

constraint remains on the mobile device, while the rest of

the tasks are offloaded to the cloud server. But in HLTO

algorithm, execution time, communication time and

energy consumption of each level of the graph are

compared against the D and E. If the condition of the

objective function as defined in Eq. (11) is satisfied only

then all the tasks of that level are offloaded to cloud

server.

B. Communication time

The communication time consumption in HLTO

algorithm and K-M LARAC algorithm is shown in Fig. 4.

In our approach, the communication time is the time

specified for each level instead of for each task.

Communication time is added only if the parent task and

child tasks are on the different processors. In Fig. 2, for

level wise offloading, the maximum communication time

is considered for each level among the communication

time mentioned on the edges. In the existing approach, a

particular path is selected to execute on the mobile device

and all other dependent tasks of the selected path are

offloaded to the cloud server. Thus, the communication

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

14

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

Fig. 2. Different task graphs used for simulation.

overhead between the parent task processing and child

task processing increases. But in our algorithm, it helps to

reduce the communication overhead by executing the all

tasks of a level on the same processor. As shown in the

Fig. 4, for small graphs like graphs with 8 and 12 tasks

have less communication overhead but as the dependency

among the tasks increases, accordingly, communication

time increases.

A. Mobile device energy consumption and total

energy consumption of the application

Energy consumption on the mobile device and overall

energy consumption of the application is presented in

Fig. 5 and Fig. 6 respectively. Energy consumption of the

application is dependent on the execution time and

communication time. The energy consumption on the

mobile device and total energy consumption are

dependent on the results of section 5.3 and section 5.4.

Energy consumption for mobile device and total energy

consumption of the application is calculated using the Eq.

(6) and Eq. (7). The results show the less energy

consumption with graphs of 8 and 12 tasks have less

number of tasks and less tasks interdependencies. But it is

increasing with increase in tasks and their inter

dependencies.

Fig. 3. Total execution time.

Fig. 4. Total communication time.

Fig. 5. Mobile device energy consumption.

Fig. 6. Total energy consumption.

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

15

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

VI. DISCUSSION

In the proposed heuristic approach for level-wise task

offloading technique, we have considered a mobile

application as a task graph with dependency among the

tasks. In the mobile cloud computing environment, the

communication time is a critical parameter for task

offloading. The overall time of the application execution

required to be completed within the deadline of the

application as well as the overall energy consumption of

the application must be within the maximum available

energy on the mobile device. To achieve this objective,

we have considered the level-wise task offloading

technique for an application. The main benefit of this

technique is that it helps to reduce the communication

time which ultimately improves the overall execution

time of the application. The simulation experiments show

the better performance of the proposed work with respect

to execution time and energy consumption.

VII. CONCLUSION

The performance of the mobile applications can be

improved by using computational offloading methods.

The battery life, as well as other resources of the mobile

devices, can be enhanced by using the power of cloud

computing. Identifying the computational complex tasks

from the mobile application is the key component to take

the optimal offloading decision. The K-M LARAC

algorithm has not considered the effect of the

interdependency of the tasks in a mobile application.

There are number of factors that influence the

performance of offloading in the mobile cloud computing

environment. Wireless network and application

characteristics are the key parameters that affect the

execution of the application in MCC. In wireless network,

availability of the bandwidth rate plays the crucial role.

As the bandwidth rate is high, less communication time

will be consumed. But if the interdependency among the

tasks in an application is high then the decision about the

selection of tasks offloading is highly significant.

In this paper, we proposed an algorithm for time and

energy efficient task offloading. The algorithm considers

the interdependency among the tasks within an

application. As the interdependency increases, delay

sensitivity increases. The availability of resources on the

mobile device is analyzed and considered as the

maximum available energy. If the maximum available

energy is enough to execute the level on the mobile

device, then no offloading is done. Otherwise, that level is

selected for offloading. The results show the improvement

in efficient offloading of the application within the

deadline and maximum available energy as compared to

the state-of-the-art. In future work, more parameters of

the mobile device like memory, storage etc. can be

considered with battery life to take the offloading

decision. Similar kind of work can be performed with the

concept of mobile edge computing.

REFERENCES

[1] M. Ayad, M. Taher, and A. Salem, “Real-time

mobile cloud computing: A case study in face

recognition,” Proc. - 2014 IEEE 28th Int. Conf. Adv.

Inf. Netw. Appl. Work. IEEE WAINA 2014, pp. 73–

78, 2014.

[2] D. Meil??nder, F. Glinka, S. Gorlatch, L. Lin, W.

Zhang, and X. Liao, “Using mobile cloud computing

for real-time online applications,” Proc. - 2nd IEEE

Int. Conf. Mob. Cloud Comput. Serv. Eng.

MobileCloud 2014, pp. 48–56, 2014.

[3] I. Technologies, “Overview of Offloading in Smart

Mobile Devices for Mobile Cloud Computing,” vol.

5, no. 6, pp. 7855–7860, 2014.

[4] H. Qian and D. Andresen, “Extending Mobile

Device’s Battery Life by Offloading Computation to

Cloud,” Proc. - 2nd ACM Int. Conf. Mob. Softw.

Eng. Syst. MOBILESoft 2015, pp. 150–151, 2015.

[5] lan L. Bhaskar Prasad Rimal, Eunmi Choi, “2009

Fifth International Joint Conference on INC , IMS

and IDC,” Fifth Int. Jt. Conf. INC, IMS IDC, pp. 44–

51, 2009.

[6] D. Yao et al., “Energy Efficient Task Scheduling in

Mobile Cloud Computing To cite this version : HAL

Id : hal-01513756,” pp. 0–12, 2017.

[7] K. Liu, J. Peng, H. Li, X. Zhang, and W. Liu, “Multi-

device task offloading with time-constraints for

energy efficiency in mobile cloud computing,” Futur.

Gener. Comput. Syst., vol. 64, pp. 1–14, 2016.

[8] A. U. R. Khan, M. Othman, S. A. Madani, and S. U.

Khan, “A survey of mobile cloud computing

application models,” IEEE Commun. Surv. Tutorials,

vol. 16, no. 1, pp. 393–413, 2014.

[9] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To

offload or not to offload? the bandwidth and energy

costs of mobile cloud computing,” in Proceedings -

IEEE INFOCOM, 2013.

[10] M. Shiraz, A. Gani, A. Shamim, and S. Khan,

“Energy Efficient Computational Offloading

Framework for Mobile Cloud Computing,” pp. 1–18,

2015.

[11] O. Chakroun and S. Cherkaoui, “Resource Allocation

for Delay Sensitive Applications in Mobile Cloud

Computing,” 2016 IEEE 41st Conf. Local Comput.

Networks, pp. 615–618, 2016.

[12] M. Abdallah, S. Université, I. De Paris, K. Chen, and

A. Sinica, “Delay-Sensitive Video Computing in the

Cloud : A Survey,” vol. 14, no. 3, 2018.

IT in Industry, vol. 8, no.1, 2020 Published online 01-Apr-2020

16

Copyright © Authors ISSN (Print): 2204-0595

 ISSN (Online): 2203-1731

[13] E. Ahmed, A. Gani, M. Khurram, R. Buyya, and S.

U. Khan, “Journal of Network and Computer

Applications Seamless application execution in

mobile cloud computing : Motivation , taxonomy ,

and open challenges,” J. Netw. Comput. Appl., vol.

52, pp. 154–172, 2015.

[14] J. O. F. Information and C. P. Vala, “Improvement of

Dynamic Partitioning Technique in Mobile Cloud

Computing,” pp. 323–325.

[15] V. Haghighi and N. S. Moayedian, “An offloading

strategy in mobile cloud computing considering

energy and delay constraints,” IEEE Access, vol. 6,

pp. 11849–11861, 2018.

[16] C. Xian, Y. H. Lu, and Z. Li, “Adaptive computation

offloading for energy conservation on battery-

powered systems,” Proc. Int. Conf. Parallel Distrib.

Syst. - ICPADS, vol. 1, 2007.

[17] C. Wang and Z. Li, “A computation offloading

scheme on handheld devices,” J. Parallel Distrib.

Comput., vol. 64, no. 6, pp. 740– 746, 2004.

[18] A. Ellouze, M. Gagnaire, and A. Haddad, “A mobile

application offloading algorithm for mobile cloud

computing,” Proc. - 2015 3rd IEEE Int. Conf. Mob.

Cloud Comput. Serv. Eng. MobileCloud 2015, pp.

34–40, 2015.

[19] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An

optimal offloading partitioning algorithm in mobile

cloud computing,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 9826 LNCS, pp. 311–

328, 2016.

[20] F. H. Tseng, H. H. Cho, K. Di Chang, J. C. Li, and T.

K. Shih, “Application-oriented offloading in

heterogeneous networks for mobile cloud

computing,” Enterp. Inf. Syst., vol. 12, no. 4, pp.

398–413, 2018.

[21] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya,

“Computation Offloading for Service Workflow in

Mobile Cloud Computing,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 12, pp. 3317–3329, 2015.

[22] D. Huang, P. Wang, and D. Niyato, “A dynamic

offloading algorithm for mobile computing,” IEEE

Trans. Wirel. Commun., vol. 11, no. 6, pp. 1991–

1995, 2012.

[23] R. Kumari, S. Kaushal, and N. Chilamkurti, “Energy

conscious multi-site computation offloading for

mobile cloud computing,” Soft Comput., vol. 22, no.

20, pp. 6751–6764, 2018.

[24] R. Kumari and S. Kaushal, “Application Offloading

Using Data Aggregation in Mobile Cloud Computing

Environment.”

[25] M. Akram and A. Elnahas, “Energy-aware offloading

technique for Mobile cloud computing,” Proc. - 2015

Int. Conf. Futur. Internet Things Cloud, FiCloud

2015 2015 Int. Conf. Open Big Data, OBD 2015, pp.

349–356, 2015.

[26] A. P. Miettinen, “Energy efficiency of mobile clients

in cloud computing,” HotCloud’10 Proc. 2nd

USENIX Conf. Hot Top. cloud Comput., pp. 4–11,

2010.

[27] F. Xia, F. Ding, J. Li, X. Kong, L. T. Yang, and J.

Ma, “Phone2Cloud: Exploiting computation

offloading for energy saving on smartphones in

mobile cloud computing,” Inf. Syst. Front., vol. 16,

no. 1, pp. 95–111, 2014.

[28] H. Wu and K. Wolter, “Tradeoff analysis for mobile

cloud offloading based on an additive energy-

performance metric,” Proc. 8th Int. Conf., 2014.

[29] R. Kumari and S. Kaushal, “Energy efficient

approach for application execution in mobile cloud

IoT environment,” Proc. Second Int. Conf. Internet

things, Data Cloud Comput. - ICC ’17, pp. 1–8,

2017.

[30] L. Zhang, D. Fu, J. Liu, E. C. H. Ngai, and W. Zhu,

“On Energy- Efficient Offloading in Mobile Cloud

for Real-Time Video Applications,” IEEE Trans.

Circuits Syst. Video Technol., vol. 27, no. 1, pp.

170–181, 2017.

[31] M. Ahmadi, N. Khanezaei, S. Manavi, F. F.

Moghaddam, and T. Khodadadi, “A comparative

study of time management and energy consumption

in mobile cloud computing,” Proc. - 2014 5th IEEE

Control Syst. Grad. Res. Colloquium, ICSGRC 2014,

pp. 199–203, 2014.

[32] L. Guan, X. Ke, M. Song, and J. Song, “A survey of

research on mobile cloud computing,” Proc. - 2011

10th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS

2011, pp. 387–392, 2011.

[33] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Sustainable

Computing : Informatics and Systems Energy-

efficient computation offloading and resource

allocation for delay-sensitive mobile edge

computing,” Sustain. Comput. Informatics Syst., vol.

21, pp. 154–164, 2019.

[34] I. Chantaksinopas, W. Lee, A. Prayote, and P.

Oothongsap, “Delay-Sensitive Applications in

VANET and Seamless Connectivity : The Limitation

of UMTS Network,” vol. 12, no. 10, pp. 54–61, 2012.

