
 
 
 

1506 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

DESIGN A MODEL TO ANALYZE THE IMPACT 

OF DIFFERENT ASPECTS ON SOFTWARE 

DEVELOPMENT PERFORMANCE 

Dipali Brijpal Singh Tawar 

Research Scholar, Dept. of Computer Application, 

Dr. A.P.J Abdul Kalam University, Indore(M.P), India 

 

Dr.Deepika Pathak  

Research Guide, Dept. of Computer Application, 

Dr. A.P.J Abdul Kalam University, Indore(M.P), India 

ABSTRACT 

The accomplishment of feasible upper hand has 

been a significant objective of each industry 

these days. In the quickly developing software 

industry, the expanding number of contenders, 

accessibility of various software development 

tools and cycle with differed the board 

procedure has made the industry more mind 

boggling and testing. To comprehend this 

interest of continually changing climate of 

software market, the known ascribes and factors 

of representative conduct, for example, team 

size, requirements, innovation, culture, 

experience and software development 

frameworks ought to be considered to settle on 

choice. The interrelation between these 

accessible assets assists with bettering 

comprehends the developmental interaction and 

accomplish better outcome. Quality of software 

items relies on different period of software 

development measure. Cycle of software 

development is utilized to make and accomplish 

quality in software items. Software development 

measure utilizes four primary stages which have 

its own significance for development. Software 

quality is a conformance to requirements which 

is isolated into useful and non-practical 

requirements.  

KEYWORDS: Software development process, 

Software quality, Software requirement, 

Software design, Software 

coding/implementation, Software testing. 

INTRODUCTION 

Software process can be characterized as "a bunch 

of activities, methods, practices, and 

transformations that individuals use to develop and 

keep up software and the related items". As per 

IEEE software development process is a process by 

which client needs are converted into a software 

item. The process involves making an 

interpretation of client needs into software 

requirements, changing the software requirements 

into configuration, executing the plan in code, 

testing the code, and now and again, introducing 

and looking at the software for operational use. To 

keep up the software extension process, numerous 

effective quality frameworks are developed; which 

address an association's business requirements. 

Architects utilize various kinds of framework 

development process model to coordinate the 

undertaking's life cycle. Various activities might be 

done in various stages by a particular or team doing 

software development process. The principle 

objective of the development of a framework is its 

productive combination, all things considered, 

circumstances. Various software development 

methods have been received to develop the 

software items, for example, waterfall model, 

iterative and incremental model, spiral model, V 

model, rapid application development, prototyping 

model, agile model, and hybrid spiral model. The 

absolute most normally utilized are waterfall, 

spiral, V model, and agile model. Software 

development associations have understood that 

adherence to a reasonable all around characterized 

life cycle model assists with delivering great 

quality items. For the most part there are four 

period of software development; software 

prerequisite, software plan, software 

coding/execution and software testing, which have 

been utilized in various models. Every single stage 

has an individual effect on software quality credits. 

These stages assume a significant part to improve 



 
 
 

1507 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

quality in completed items. An appropriate life 

cycle model would possible be able to be chosen 

dependent on an investigation of issues, for 

example, qualities of the software to be developed, 

attributes of development team, and qualities of 

client. 

 

Figure 1.1 Software Development Methodologies 

There are various issues in customary software 

development process. The disappointment of 

numerous software projects as far as not gathering 

client/business requirements, inclined to blunders 

has prompted software quality getting one of the 

central points of interest from all partners' 

perspective. In a competitive environment quality 

based item is essential requirement for any item 

achievement. To achieve quality, proficient process 

is required. The objective of this paper is to 

introduce a review on the effect of software 

development process on software quality. 

Exploration objective of this review paper is to 

examine the effect of software development 

process on software quality. Software necessity 

examination used to gather needs or prerequisite of 

software. Prerequisite examination is the initial step 

which involve to the quality since this progression 

used to catch all practical and non-utilitarian 

requirements to be carried out in end result. 

Software configuration is following stage to derive 

quality to make total design or engineering of 

software which is expressed into necessity 

determination. Configuration provides not 

exclusively to discover how the software item will 

be show up, yet additionally permits both software 

clients and developers to acknowledge how it will 

work. Since configuration is the best way to totally 

make an interpretation of requirements into a 

completed item. After software plan software 

coding/execution stage is utilized for carrying out 

the software. Software execution depends on 

programming language. This stage additionally 

assumes a significant part since utilizing coding an 

executable version of software is made. 

Programming language can affect the coding 

process, yet additionally the properties of the 

subsequent item and its quality. Software testing is 

directed when executable software exists. Testing 

used to discover blunders and fix them to help 

software quality. Testing check what all capacities 

software expected to do and additionally watch that 

software isn't doing what he shouldn't do. In this 

paper we have coordinated the activities in 

software development process and dissect the effect 

of individual stage on various all around 

characterized properties of quality. As we have 

seen every stage exclusively affects software 

quality ascribes. 

SOFTWARE DEVELOPMENT PROCESS 

Software process is a coordinated arrangement of 

activities needed to develop a software item. 

Software development is the process of taking a 

bunch of requirements from a client, breaking 

down them, designing an answer for the issue, and 



 
 
 

1508 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

afterward carrying out that arrangement on a PC. 

The worldwide norm for depicting the technique 

for choosing, executing and observing the existence 

cycle for software is ISO/IEC 12207. There are 

numerous ways to deal with software development, 

known as software development life cycle models, 

approaches, or processes. The waterfall model is a 

customary version, and agile software development 

is a most current version for development. There 

are various software processes however every 

process incorporates four activities: Requirement, 

Design, Coding, and Testing. After that support is 

needed for additional changes. As of now software 

association moving its concentration from item 

issues to process issues. Software quality is 

significant worry for software industry and 

association. An overall process model for software 

envelops a bunch of system and umbrella activities, 

activities, and work undertakings. Process can be 

utilized to solve basic issues that are happened as a 

component of the software process. Every model 

provides an alternate process stream, yet all play 

out similar arrangement of activities: 

correspondence, arranging, modeling, 

development, and sending. Successive process 

models, for example, waterfall and V models are 

straight process models. This is pertinent in 

circumstances where requirements are all around 

characterized and stable. Incremental process 

models are iterative in nature and develop working 

versions of software basically. Evolutionary 

process models utilize the iterative, incremental 

nature to carry out software item. 

 

Figure 1.2 Software Development Process 

Evolutionary models, for example, prototyping and 

spiral model produce incremental work items 

rapidly. These process models can be utilized from 

development to long haul framework upkeep. Agile 

is another model for software development which 

utilizes iterative/incremental development, less 

documentation, lightweight and less process 

controls. It was focused at little to medium-size 

software projects and more modest teams of 

developers and develops total software rapidly. 

Extraordinary models incorporate the part based 

model that fuse segment reuse and get together; the 

proper methods model that includes a numerical 

based way to deal with software development; and 

the perspective arranged model which uses 

crosscutting concerns traversing for framework 

design. The Unified Process is a "utilization case 

driven, engineering driven, iterative and 

incremental" software process designed for UML 

methods and tools. Individual and team models for 

the software process have been developed. Both 

provide estimation, arranging, and self-course as 

key elements for a fruitful software process. 

Quality of process influences quality of item. 

Process is significant on the grounds that quality is 

derived by all around characterized process. 

Determination of most fitting process model is 

significant worry to achieve quality. 

LITERATURE REVIEW 

Apostolos Ampatzoglou et al (2012), Software 

quality is viewed as perhaps the main worries of 

software creation teams. Also, design designs are 

recorded answers for basic design issues that are 

required to improve software quality. Up to this 

point, the outcomes on the impact of design designs 

on software quality are controversial. Points: This 

investigation expects to propose an approach for 

contrasting design designs with alternative designs 

with an insightful technique. Also, the investigation 

outlines the technique by contrasting three design 



 
 
 

1509 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

examples and two alternative arrangements, 

concerning several quality ascribes. Strategy: The 

paper presents a hypothetical/scientific approach to 

look at sets of ''authoritative'' answers for design 

issues. The investigation is hypothetical as in the 

arrangements are separated from genuine 

frameworks, even however they originate from 

solid issues. The examination is insightful as in the 

arrangements are thought about dependent on their 

potential quantities of classes and on conditions 

addressing the values of the various primary quality 

ascribes in capacity of these quantities of classes. 

The exploratory designs have been created by 

examining the writing, by investigating open-

source projects and by utilizing design designs. 

Moreover, we have made a device that helps 

experts in picking the ideal design arrangement, as 

indicated by their exceptional requirements. 

Anne Martens et al (2014), Quantitative 

expectation of quality properties (for example extra 

useful properties like execution, dependability, and 

cost) of software structures during design upholds a 

precise software designing methodology. 

Designing structures that display a decent 

compromise between different quality rules is hard, 

on the grounds that even after a utilitarian design 

has been made, many excess levels of opportunity 

in the software engineering range a huge, 

spasmodic design space. In current practice, 

software engineers attempt to discover 

arrangements physically, which is tedious, can be 

mistake inclined and can prompt imperfect designs. 

We propose a mechanized way to deal with search 

the design space for great arrangements. Beginning 

with a given introductory structural model, the 

methodology iteratively adjusts and evaluates 

engineering models. Our methodology applies a 

multi-rules hereditary calculation to software 

designs modelled with the Palladio Component 

Model. It upholds quantitative execution, 

dependability, and cost forecast and can be reached 

out to other quantitative quality measures of 

software models. We validate the materialness of 

our methodology by applying it to an engineering 

model of a segment based business data framework 

and examine its quality measures compromises via 

naturally investigating in excess of 1200 alternative 

design competitors. 

RESEARCH METHODOLOGY 

Software items are continually improving: new 

highlights are added, UI changes, and so forth 

Software execution is a significant perspective in 

developing any software item. Execution: capacity 

to create a specific number of items. At the end of 

the day, it is a capacity to deliver a specific 

measure of item. The relevance of this issue is 

clarified by continually expanding trouble and 

significance of software tools. Execution is 

especially significant in the accompanying cases. 

• In engineering and scientific studies, 

where complex and long-term calculations 

are performed, and processing time in 

cluster systems is expensive and limited;  

• In web applications, thus, a page 

generation time is critical to user and 

directly depends on power volume of 

server;  

• In software products used and so on. 

An exact examination of software execution can be 

significant in lessening the expense of support and 

gear. The idea of execution is either software 

execution or reactivity: Performance - measure of 

data processed by the framework inside a period 

unit. Reactivity - interval between information 

contribution to framework and age of relevant 

information yield. As such, execution is an ability 

of software item to be less reliant on the assets of 

device: processing season of processor, 

transmission capacity of correspondence diverts of 

limit involved in inside and outside memory, etc. 

Numerous makers are truly occupied with 

execution issues and spotlight on streamlining here 

additional. There is a typical propensity that the 

presentation of the errands available in industry 

isn't evaluated properly: "Make it just prior to 

accelerating" and "PC model of following year will 

be half quicker at any rate”. 

The factors affecting software performance are: 

1) Computer memory volume;   

2) Hard drive access speed;  

3) Maximum frequency of work and 

processor overload;  

4) Software upgrade and so forth. 

Effectiveness is an execution of right activities. At 

the end of the day, effectiveness is an aggregation 

of information, tools, and set of procedures, hence 

it takes into account more effective work. 



 
 
 

1510 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

Performance is an accuracy of the activities 

performed. Performance estimates the effectiveness 

of work. To evaluate performance of software and 

data frameworks, it ought to be investigated. In 

such manner, exceptional methodologies and 

models are available for it. 

Methods for Increasing Software Performance 

There are three different ways to expand software 

performance utilizing extra projects to build 

software performance, utilizing software capacities 

to expand its performance, expanding developers' 

performance to build software performance. 

Software designed for upgraded performance is 

applied software for information age, like records, 

introductions, data sets, diagrams, computerized 

pictures, and advanced videos. They increment 

performance. On average, 78% of professionals 

utilize certain software to build performance. In 

2010, more software was developed for 

performance improvement. There are various 

approaches to upgrade software performance. One 

of these methods first takes any recorded 

organization and thinks about an average value of 

performance of workers of different elements with 

an average value of current performance of 

representatives of that element. At that point, 

performance of the organization's software is 

relatively distinguished. Appropriately, the 

important measures are taken. Various methods and 

calculations for evaluating performance of 

representatives (software engineers) working in 

organizations are available. A calculation given by 

the creator is clarified beneath. 

ALGORITHM 

Assume that there is n number of companies. 

Companies are denoted by 𝑆1, 𝑆2, 𝑆3,… 𝑆𝑛. 

Employees working in the i-th company are 

denoted by 𝑃𝑖1, 𝑃𝑖2, 𝑃𝑖3,…,𝑚 , . Performance of 

representatives working in the I-th organization is 

contrasted and performance of workers working in 

different organizations, and performance of the 

organizations is distinguished. For this, 

performance of employees working in the i-th 

company is denoted by 𝑀𝑖1,2,𝑀𝑖3,…,𝑀𝑖𝑚. To 

calculate the average performance of employees of 

the i-th company the following formula is used: 

        (1) 

𝑀𝑖     is an average value of an average value of 

performance of the rest of the companies, with the 

exception of the i-th company, and calculated with 

the following formula: 

         (2) 

𝑀𝑖     and 𝑀  are compared. If 𝑀𝑖     ≥ 𝑀  , 𝑖 = 1̅̅̅   , 𝑛  , then 

performance of company is considered satisfactory. 

Otherwise it is not considered satisfactory and 

necessary measures are taken. For example, there 

are 10 companies and each company has 8 

employees. Employees of each company and the 

average value of performance (in $) of employees 

of all companies are shown in table 1. 

5th company 9,64 

9th company 9,64 

4th company 
10,25 

6th company 
11,36 

7th company 
11,36 

8th company 
11,36 

1st company 
13,75 



 
 
 

1511 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

10th company 
13,75 

2nd company 
15,65 

3rd company 
18,25 

                         

Table 1. Average Value of Performance by Companies 

 

Using the average value of performance of 

employees the degree of their proximity can also be 

defined. Euclidean distance was used in this regard. 

The average value of performance of employees of 

the random company is denoted by 𝑀    ∗. Whereas, 

the average value of performance of employees of 

other companies is denoted by 𝑀  𝑖. 

    (3) 

Using formula (3), 𝑆𝒊 –s are found and arranged in 

ascending order, and proximity of random 

company to other companies is determined. Using 

formula (3) and Table 1, the value of 𝑆𝒊 − s are 

calculated. The values found by the companies are 

shown in Table. The issue of low performance of 

data frameworks can be solved by playing out 

various examinations and changes of processes. 

Expanding the performance of existing frameworks 

may avoid the acquisition of extra server gear and 

save extensive assets to the financial plan. 

 

Figure 1.3 Bar chart illustrating the proximity of values of companies’ performance 

To comprehend the issues of performance all the 

more unmistakably, they are divided into several 

gatherings. First gathering – incorporates 

effectively worthy issues. They are met 

everywhere. They may incorporate solicitations 

advancement, non-ideal calculation, various 

ordering of fields, etc. Such issues are immediately 

resolved by the venture trained professionals. 

Second gathering - incorporates variable and 

surprising issues. They are relatively less 

experienced. These issues happen out of the blue. 

For instance, disappointment of projects on server 

or of framework at a specific second on any hub. 

For the most part, this issue can generally be. 

Commonly, a specific strategy ought to be utilized 

to address such issues so they can be identified 



 
 
 

1512 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

during multi-client working mode. Third gathering 

- incorporates the issues previously known, 

however hard to solve. For arrangement of such 

issues various innovations, for example, equal 

registering are utilized. Purposes behind 

performance decrease issues. Investigation of 

circumstance shows that if any framework typically 

works in any event toward the start, the 

fundamental purposes behind item corruption 

(decay of article's qualities) may incorporate the 

followings: 

• Poor quality of control - failure to track 

the changes in its parameters after 

exploitation of the information system;  

• Insufficient IT infrastructure for rapid 

growth of company products;  

• Failure to check the effects of new 

functions on performance, etc. 

The developing intricacy of all software and its 

everyday use has expanded the interest in software 

investigation. This is essentially about the 

evaluation of useful highlights of software 

frameworks (their construction, and so on) 

Software performance investigation have as of late 

become effective. This examination is pointed 

toward evaluating the behavior of software, for 

example from wanting to code, through a careful 

examination of its design and behavior. An orderly 

methodology is needed to performance control all 

through the lifecycle of software. Development of 

software frameworks meeting performance 

objectives is one of the primary undertakings. 

Performance is a pointer of software frameworks, 

how great the framework is, or how fitting the 

software parts are to requirements, etc. Inactivity is 

the time needed to react to this solicitation. For 

instance, online framework might be needed to 

show the outcome inside a half second after a client 

presses the key. This is the middle time for 

incorporated frameworks to react to the events 

required.  

CONCLUSION 

Concluding, this paper proposed a procedure for 

investigating designs where design designs have 

been executed, through the numerical plan of the 

connection between design attributes and notable 

measurements, and the distinguishing proof of 

limits for which one design turns out to be more 

ideal than another. The objective of this paper was 

first to legitimize the connection among 

convenience and software design and second give a 

thought of the effect of the incorporation of specific 

ease of use proposals into a software framework. 

The article managed software performance and 

productivity of a developer, challenges and 

different issues in this field. Elite of software can 

be achieved by solving these issues. Utilizing 

practicality software framework or part can be 

altered to address flaws, improve performance or 

different credits, or adjust to a changed 

environment. So viability is significant for software 

development process. The principle finding of this 

examination is software design assume a significant 

part to achieve quality in software items. 

REFERENCES 

[1]. S.J. Mahmudova and K.K. Mamtiyev, 

“Programming and its development stages,” Baku: 

Informasiya Texnologiyalari, 2011. 

[2]. S.A. Dubakov, “Information technology 

performance analysis in the software development 

process”, Tomsk: Politekhnicheskiy Universitet, 

2005. 

[3]. V. Mikhaylov, How productivity is measured 

by the quality of software development in a system 

forming financial organization, The Conf. 

Razrabotka PO, Moscow, 2015. 

[4]. T.A. Serebryakov and Y.N. Parshin, Analysis 

of the performance of information systems in the 

enterprise, Elektronnoye nauchnoye izdaniye, 2014 

[5]. S. Saxena and S. K. Dubey, “Impact of 

Software Design Aspects on Usability,” 

International Journal of Computer Applications, 

Vol. 61, Issue 22, pp. 48-53, Jan 2013. 

[6]. P. Isaias and T. Issa, High level models and 

methodologies for information systems, Springer, 

2015 

[7]. I. Mistrík, R. Bahsoon, P. Eeles, R. Roshandel, 

and M. Stal, editors. Relating System Quality and 

Software Architecture, Morgan Kaufmann, 2014 

[8] Gaurav Kumar, Pradeep Kumar Bhatia,” Impact 

of Agile Methodology on Software Development 

Process”,” ISSN 2249- 6343International Journal 

of Computer Technology and Electronics 



 
 
 

1513 
 

IT in Industry, Vol. 9, No.2, 2021 Published Online 8-5-2021 

Copyright © Authors ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

Engineering (IJCTEE)Volume 2, Issue 4”,august 

2012. 

[9] S. Arshadi, S. Muhammadi and S. Shahzad,” 

Empirical Analysis of traditional and agile 

requirement process” Science .and Tech. and Dev., 

32 (1): 44-47, 2013 

[10] H. Zhu and I. Bayley, “On the Composability 

of Design Patterns,” IEEE Transactions on 

Software Engineering, Vol. 41, Issue 11, pp. 1138-

1152, Nov 2015. 

[11]. B. Singh and S. Gautam, “Hybrid Spiral 

Model to Improve Software Quality Using 

Knowledge Management,” International Journal of 

Performability Engineering, Vol. 12, Issue 4, pp. 

341-352, July 2016 

[12]. L. P. W. Land and J. Higgs, “An Empirical 

Study of Software Quality Improvement Practices 

from Multiple Perspectives-An Australian Case 

Study,” In Proceedings of the 1̅̅̅1̅̅̅th Pacific-Asia 

Conference on Information Systems (PACIS), pp. 

547-560, Jan 2007. 

[13]. T. ur Rehman, M. N. Khan, and N. Riaz, 

“Analysis of requirement engineering processes, 

tools/techniques and methodologies,” International 

Journal of Information Technology and Computer 

Science (IJITCS), Feb 2013 

[14]. H. P. Breivold, I. Crnkovic, and M. Larsson, 

“A systematic review of software architecture 

evolution research,” Information and Software 

Technology, Jan 2012 

[15]. R. P. Buse and W. R. Weimer, “Learning a 

metric for code readability,” IEEE Transactions on 

Software Engineering, Vol. 36, Issue 4, pp. 546-

558, Jul 2010 


