
    IT in Industry, vol. 7, no.1, 2019                                                                                                        Published online 27-Mar-2019 

 

Copyright © K.Vidyasankar,      15                                                    ISSN (Print): 2204-0595 

2019                                                                                                                                                      ISSN (Online): 2203-1731 

Order Preserving Stream Processing In Fog 

Computing Architectures 
 

K. Vidyasankar 
 

Department of Computer Science, Memorial University of Newfoundland, 

St. John’s, Newfoundland, Canada 
 

Abstract—A Fog Computing architecture consists of 

edge nodes that generate and possibly pre-process (sensor) 

data, fog nodes that do some processing quickly and do 

any actuations that may be needed, and cloud nodes that 

may perform further detailed analysis for long-term and 

archival purposes. Processing of a batch of input data is 

distributed into sub-computations which are executed at 

the different nodes of the architecture. In many 

applications, the computations are expected to preserve the 

order in which the batches arrive at the sources. In this 

paper, we discuss mechanisms for performing the 

computations at a node in correct order, by storing some 

batches temporarily and/or dropping some batches. The 

former option causes a delay in processing and the latter 

option affects Quality of Service (QoS). We bring out the 

trade-offs between processing delay and storage 

capabilities of the nodes, and also between QoS and the 

storage capabilities. 

 

Keywords— Fog computing, Order preserving 

computations, Quality of Service 

 

1. INTRODUCTION 

 

nternet of Things (IoT) is about making things smartin 

some functionality, and connecting and enabling them to 

perform complex tasks by themselves. A “thing” is any 

object of interest with some communication capability. 

IoT applications include Connected Vehicles, Smart Grid, 

Smart Cities, HealthCare and, in general, Wireless Sensors 

and Actuators Networks [1]. Billions of devices are expected 

to be made smart in the very near future. They will produce 

massive amounts of data, requiring enormous amount of 

computations. In cloud-based IoT environment, the 

computations are delegated to the cloud. The cloud is certainly 

scalable with respect to processing capability and storage. 

However, many applications require quick real time 

computations and local actuations, and the latency involved in 

communicating with the cloud is not tolerable. Further, 

sending huge amount of data to the cloud requires high 

network bandwidth and incurs considerable delay. In addition, 

in many applications, 24/7 connectivity to the cloud may not 

be available. To overcome these constraints, afog computing 

architecture has been proposed recently [1, 2, 3, 4]. It consists 

of edge nodes that generate and possibly pre-process (sensor) 

data, fog nodes that do some processing quickly and enable 

any actuations that may beneeded, and cloud nodes that may 

perform further, detailed analytics for long-term and archival 

purposes. 

 

Fog computing typically involves continuous processing of 

stream data that are input to the edge devices. The data consist 

of tuples. They are processed in batches of tuples. Each 

processing instance at a node uses some input batches and 

produces an output batch which is sent to the parent of that 

node (except at the cloud level) for further processing. The 

computation to be done on a batch is decomposed into sub-

computations to be executed at the different nodes in the fog 

architecture. Edge and fog nodes typically have limited 

storage, compute and network connectivity capabilities. 

Hence, the computations need to be distributed carefully 

among the processing nodes. Guaranteeing consistency of the 

executions is very important. Consistency issues arise for sub-

computations at the individual nodes as well as the entire 

computations on individual batches and computations over 

sequences of input batches. 

 

In this paper, we consider each sub-computation at a node as 

a transaction. We also assume serial executions of these 

transactions in each node. We relate consistency to 

serializability of these transactions at every node. In several 

applications, the computations on the sequence of batches are 

expected to preserve the order in which the batches arrive 

from the sources. This is the consecutive serializability 

requirement for the transactions. In some cases, the sub-

computations at some nodes, especially at lower levels of the 

hierarchy, may not be required to follow batch order, that is, 

the sequence can besaga[5], with the order being restored at 

higher levels. This helps also for scalability where the 

computations at a level can be distributed over multiple nodes 

and the results forwarded to a single node in the next higher 

level. Then the input batches in the higher level may not arrive 

according to the batch order. Unreliable network connectivity 

may also produce out-of-order message delivery. In this paper, 

we focus on achieving consecutive serializability at a node in 

the presence of out-of-order message delivery. We do this by 

I 
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storing some input batches temporarily and/or dropping some 

batches. The first option requires storage capacity and also 

causes delay in processing whereas the second option affects 

the accuracy of the continuous executions. This affects Quality 

of Service (QoS). We identify some QoS parameters that are 

relevant in this context. We discuss different execution options 

that offer trade-offs between QoS and storage capacities of the 

processing nodes. 

 

We consider the simple case of inputs from a single source 

in Section 2. We consider individual executions of the input 

batches as well as their combined executions. We consider 

processing batches from multiple input sources in Section 3 

and multiple heterogeneous input sources in Section 4. We 

discuss some related works in Section 5. We conclude in 

Section 6. 

 

2. SINGLE INPUT SOURCE 

 

We use the basic definitions given in Vidyasankar [6]. We 

consider a hierarchy (rooted tree) V of nodes v. It consists of n 

levels. In this section, we consider the simple case of a single 

input source. Then, the hierarchy is a simple path of length 

n−1. The node in the path in jth level will be vj. Here, vn refers 

to the cloud, v1 to the edge and the intermediate nodes to the 

fog. We assume that stream data is generated at level 0. The 

edge devices at level 1 themselves may generate some or all of 

this data. We separate the generation into another level for 

notational convenience. Each node vj has processing 

capability Pjand storage capacity Sj, each expressed in 

appropriate units. The source input batches are numbered 

sequentially. We refer to the ith batch as bi. Each batch bi is 

processed in one or more nodes. The computation for bi is 

referred to as C(bi). We consider a decomposition of C(bi) into 

sub-computations as 

 

C(bi) = c1,i+c2,i+ · · · +cn,i. 
 

Such decompositions will bebased on the semantics of the 

applications and of the computations. Hereeach cj,iis to be 

executed at level j, in the given sequential order of the levels. 

The sum of the computations until level j is referred to as 

Cj,i(with capital C). That is, 

 

Cj,i= c1,i+ · · · +cj,i. 
 

 

Then, Cn,i= C(bi). 
 

As stated earlier, we assume in this paper that the individual 

cj,i’s are executed atomically and serially in each level j. We 

denote the processing requirement and storage requirement for 

cj,i as p(cj,i) and s(cj,i), respectively. Obviously, we must have 

Pj≥p(cj,i) and Sj≥ s(cj,i). With each cj,i, we associate an input 

batch In(cj,i) and an output batch Out(cj,i).  

 

Several (devices in) nodes may have limited range of 

transmission. Nodes have to be placed such that dataflow from 

one level to the next is possible. To facilitate this, some nodes 

could be placed just to receive data from the lower level and 

send it to upper level. (This may involve storing some data 

temporarily.) We call these relay nodes. Sub-computation 

done in such a node will be nil. Output batch of this 

computation is the same as the input batch. 

 

We discuss serializable executions of Cj,i’s. We define the 

following. 

 

(1) C is the set of computations cj,i’s for a given set of 

batches. 

(2) ≺B is the batch order. 

(3) ≺L is the level order. 

(4) ≺ is ≺B ∪≺L. 

(5) A history H over (C, ≺) is a sequence of cj,i’s in C 

obeying ≺. 

(6) A history H is globally serial if it is a sequence of 

C(bi)’s, that is, all the cj,i’s for each i occur 

consecutively in H. It is globally serializable if it is 

equivalent to a globally serial history. 

 

Some batches may be processed only partially. That is, C(bi) 

may only be Ck,i(bi), for some k, k<n. The above definition 

applies to such computations also. 

 

2.1 INDIVIDUAL PROCESSING 
 

We first consider processing of the batches individually at 

each level. Then, consecutive serializability of Cj,i’s, at each 

level j, is guaranteed if ck,i’s are executed at each level k 

between 1 and j serially according to the batch order. (Recall 

that we are assuming atomic execution of each cj,i.) In the 

following, we look at the ways of obtaining serial order 

effectively when output batches from one level may arrive at 

the next level out of order. 

 

If cj,i’s are not conflicting with each other, then an out-of-

order execution is serializable. Then, inputs may be processed 

as they arrive and the corresponding outputs sent to the next 

level. This option is very favorable for horizontal scalability. 

Batches may be split and processed in multiple nodes in the 

same level provided the combined computations will 

constitute cj,i(bi). However, an out-of-order execution together 

with an out-of-order message delivery from the current level 

to the next might amplify the extent of the out-of-order in the 

arrival of batches in the next level. (The extent of out-of-order 
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can be characterized in many ways: (i) how late a batch 

arrives, that is, the number of batches with greater ids that 

come before this batch, (ii) how early a batch arrives, namely, 

the number of batches with smaller ids that come after this 

batch, (iii) the number of late or early arriving batches, (iv) 

averages over thedelay or too early arrival, etc.) 

 

In the following, we consider the case where cj,i’s are 

conflicting. 

 

• Out-of-order inputs (messages) can be kept in a 

pending set, and the executions themselves can be 

done in correct order when the respective batches 

arrive. This involves waiting, causing delay in 

execution, and requires storage space for the pending 

set. Depending on the extent of the out-of-order, both 

the delay and the required amount of storage space 

will vary. 

 

• Without pending set, executions can be done for 

batches arriving in increasing order of their ids, as 

they arrive, and late-arriving batches can be ignored 

(dropped). This implies that the dropped batches are 

processed only partially, up to the previous level. No 

storage space is required here. In the example 

sequence (1,8,4,2,5,7,9,3), batches (with ids) 1, 8 and 

9 will be processed and the remaining will be 

ignored. 
 

• Without pending set, executions can be done for 

batches in the correct consecutive order of their ids. 

Out-of-order batches (those that arrive too early) can 

be ignored. In the above example sequence 

(1,8,4,2,5,7,9,3), batches 1,2 and 3 will be processed 

and the remaining ignored. 

 

• A limited storage space can be kept for the pending 

set and early-arriving out-of-order messages that 

cannot be added to the pending set can be ignored. 

For example, with (1,8,4,2,5,7,9,3), if storage space is 

available only for three batches, after batches 8,4 and 

5, batches 7 and 9 might be ignored. (Other options 

regarding which three batches to store can also be 

exercised.) Similarly, out-of-order messages arriving 

later than a certain amount of delay can be ignored. 

 

 

We define drop ratio as the number of batches dropped 

compared to the total number of batches. We note that, in the 

above options, a trade-off exists between drop ratio and 

storage space, and between drop ratio and processing delay. 

Message loss is equivalent to dropping the message due to 

excessive delay. 
 

If network connectivity is disrupted intermittently and hence 

output batches cannot be transmitted immediately after the 

executions, then the following options exist: 
 

• When storage space is available, the options are the 

following. Here, two pending sets are used, one for 

storing input batches and the other for storing output 

batches. 
 

o Store output batches in the output pending 

set and send several of them together when 

connectivity is restored. Continue 

processing the input batches. (This option 

can be followed even when network 

connectivity is available, if transmitting 

several batches together will be cheaper than 

sending them one at a time.) 

o Stop processing until the output batch is 

sent, and store the incoming batches in the 

input pending set. 

o Store output batches in the output pending 

set until connectivity becomes available, and 

also store input batches in the input pending 

set until they can be processed. Continue 

processing. This option is suitable when 

input arrives from the lower level as a set of 

batches. 
 

• When sufficient storage space, for output batches 

and/or pending sets, is not available, the options are 

the following. 

 

o Drop the output batch thus terminating the 

processing of the corresponding batch and 

continue processing the input batches. 

o Stop processing until the output batch is 

sent, and drop the batches that are incoming 

in the mean time, thus terminating their 

executions. 

 

Here also, we observe a trade-off between drop ratio and 

storage space. Nodes in the hierarchy could be heterogeneous. 

Different nodes may follow different options. Out-of-order 

execution may be acceptable at some levels, and correct order 

required at certain levels. This amounts to cj,i’s being non-

conflicting at the former levels and conflicting in the latter 

ones. Then, the execution options may be chosen 

appropriately. We also note that allowing some out-of-order 

execution will reduce drop ratio. That is, there is a trade-off 

between the extent of the out-of-order and drop ratio. 
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2.2 COMBINING MULTIPLE BATCHES 
 

At any level, several input batches may be combined and 

processed together. That is, the computation at vjcould be 

cj(bi:k), combining cjfor batches bito bk. The combined output 

will be sent to vj+1. An example is when the frequencies of 

executions at different levels are different. For instance, c1 

may be performed every 5 seconds and c2 performed every 10 

seconds. Then, the outputs of two executions of c1 may be 

processed together in one execution of c2. Another situation is 

when network connectivity is not always available to send 

data from one level to the next level and the output batches 

corresponding to several computations kept and sent together 

when connectivity becomes available. 

 

In the following discussions, we use examples where three 

batches are combined. 

 

2.2.1 NON-OVERLAPPING GROUPINGS 
 

(1) Grouping of consecutive batches: 

 

Wait until all the relevant batches arrive and then process. 

Delay and storage space considerations discussed in the single 

batch processing case are applicable here also. In addition, we 

need to consider the following. 

 

(a) Suppose batches 1, 2 and 3 are to be grouped, and 2 arrives 

very late (or does not arrive due to message loss). Then, we 

can drop that batch. Then, we can do one of the following: 

 

• drop batches 1 and 3, that is, the entire group; 

• do the computation for batch 1 alone (if the 

application semantics allows it) and combine batch 3 

with 4 and 5; or 

• combine batches 1, 3 and 4 if the application 

semantics allows grouping of a broken sequence of 

batches. 

 

All these options relate to QoS differently: (i) absence or 

presence of broken sequences and, in the latter case, the 

number or percentage of broken sequences and (ii) fixed or 

variable size groupings. 

 

(b) The batches for latter groupings may become available 

before those for earlier groupings (for example, (4,5,6) before 

(1,2,3)). If the computations are not conflicting, they can be 

processed in any order. Otherwise, they have to be processed 

in the correct batch order. If (4,5,6) grouping is processed first 

and then we find that batch 2 has to be dropped, the options 

are dropping 1 and 3 also or processing them either 

individually or by combining them. 

(2) Grouping of non-consecutive batches: 
 

As and when sufficient number of batches are available, the 

grouping can be done. The only storage space required will be 

for the batches waiting for the grouping. 

 

2.2.2 OVERLAPPING GROUPINGS 
 

An example is (1,2,3), (2,3,4), (3,4,5), etc. After 1 and 2, 

suppose 5 arrives. Then wait for 3. When 3 arrives, combine 

(1,2,3). Then, wait for 4, etc. Whichever batches need to 

arrive, wait for them. Here, suppose 3 does not arrive for a 

long time and so it is dropped. Then, groupings (1,2,4), 

(2,4,5), etc. can be considered. Another possibility is dropping 

(1,2,3), (2,3,4) and (3,4,5), namely, all the originally intended 

groupings with 3. The choice would depend on the application 

semantics of ‘consecutive’ batches. Here also, different 

options affect QoS differently. The delay and the storage space 

factors are the same as with non-overlapping groupings 

 

3. MULTIPLE HOMOGENEOUS INPUT SOURCES 

 

In this section, we consider multiple input sources, all 

producing similar data that are to be processed the same way. 

The hierarchy is a tree. We consider a general height-balanced 

tree. (The discussion in the next section covers arbitrary trees.) 

We again separate the data generation part into level 0 and 

each source feeds to, that is, sends its output to a distinct node 

in level 1. Thus, each node in level 1 has one child. 

 

We consider the case where, at each level, each node 

performs the same computation. (This restriction is also 

relaxed in the next section.) Each node in level 1 will process 

its source input and send its output to its parent. Each node in 

level j, for 1 <j <n, will process the inputs from all its children 

and will send a single output batch, at the end of processing, to 

its parent. 

 

We will first consider the case where all sources generate 

data synchronously. We refer to one such set of batches as a 

batch-set. We first consider synchronous processing of the 

batch-sets. That is, at each step, one batch arrives from each 

child and the set of these batches is processed. The batch-sets 

are indexed sequentially. A batch-set with index iis referred to 

as Bi. A computation at a node vjin each level j combines the 

computations cj(x) of all the source input batches x in a batch-

set that are input to the descendants of vjin level 1. The 

computation required for Bi isC(Bi), decomposed into c1(Bi) 

+c2(Bi) + · · · +cn(Bi). 

 

We now consider out-of-order message delivery from one 

level to another. We assume that the communication between 

any two nodes (a parent and a child) is independent of the 
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communications between other pairs of such nodes. Therefore, 

the extent of the out-of-order will vary with respect to 

messages from different children. In the following, we 

illustrate the options with an example where the messages 

from only one child arrive out-of-order and messages from all 

other children arrive in correct order. We consider the example 

sequence (1,8,4,2,5,7,9,3) for messages from child x. Input 

batch from x with batch id k is denoted xk. 

 

• The executions are done in correct consecutive order 

when all the inputs for the corresponding batch-set 

have arrived. Until then, the incoming batches are 

kept in separate pending sets, one for each child. For 

the sequence (1,8,4,2,5,7,9,3), after processing B1, 

the pending set for x will store inputs for batch-set ids 

8 and 4 and pending sets for the other children will 

store 2 and 3 until x2 arrives. Then, the computation 

can be done for B2. After three further steps, the 

pending set for x will have (8,4,5,7,9) and other 

pending sets will have (3,4,5,6,7). On arrival of x3, B3 

will be processed, followed by B4 and B5, waiting for 

x6 for the processing of B6, and so on. This involves 

waiting, causing delay in execution, and requires 

considerable storage space for the pending sets. 

 

• We can reduce the size of the pending sets 

considerably as follows. Executions can be done in 

the correct consecutive order of the batch-sets with 

the batches arriving from children in the correct 

order, and not waiting for the batches of that batch-

set from other children; when these batches arrive 

later, they are ignored. Out-of-order batches from 

other children with greater ids (those arriving too 

early) are stored in the pending sets, and used when 

their turns arrive. In our sequence (1,8,4,2,5,7,9,3), 

after B1, batch-sets B2 and B3 will be processed 

without the inputs from child x. Batches 8 and 4 will 

be stored in the pending set for x. Then, B4 will be 

processed with the newly arriving batches from other 

children and the one stored in the pending set for x, 

ignoring x2. Batch-set B5 will be processed with 

batches from all children, and B6 with inputs from all 

except x, storing 7 in the pending set of x, and so on. 
 

o This implies executions on partial batch-

sets. This affects QoS relating to whether 

there are executions on partial batch-sets 

and, if so, a measure of the density of the 

partial sets, for example, how many batches, 

how well they represent various 

geographical regions, etc. 

 

o The execution can be subject to receiving 

batches from a minimum number of 

children, to make it meaningful. Otherwise, 

no execution may be done, resulting in 

dropping the entire batch-set in that level. 

This affects QoS differently: the drop ratio 

can be categorized as batch drop ratio and 

batch-set drop ratio. 
 
• A variation in the above option is dropping the out-of-

order inputs (those with greater ids, 8 in the above 

example), instead of storing in the pending set. That is, all 

out-of-order messages are dropped. Then, no pending sets 

are kept. 

 

Combinations of the above options are possible, especially 

when the extent of the out-of-order is expected to be small. 

The first option of keeping the batches in the pending sets 

until all the inputs of the next batch-set arrive can be used for 

a while. At some stage, if the storage space becomes 

insufficient or the delay becomes too much, executions with 

partial batch-sets can be done. If the computations on different 

batch-sets are not conflicting, then the batch-sets canbe 

processed soon after all their input batches are received. For 

example, in the sequence (1,8,4,2,5,7,9,3), B4 can be processed 

without waiting for B3 (in the case of not opting for executions 

on partial batch-sets). This will also reduce the number of 

entries in the pending sets. 

 

We note that, as illustrated in the above example, if the 

inputs from even one child are out-of-order, the inputs from all 

other children have to be kept in the pending sets for correct, 

consecutive, order of execution. 

 

Allowing for non-synchronous arrival of input batches (at 

any level, including the source level) and hence non-

synchronous execution is straightforward. The batches from 

each input can be kept in the respective pending sets and when 

a batch-set is complete it can be processed. The processing 

could be in the correct order or any order. At some stage, an 

incomplete batch-set can either be dropped or processed as 

such. 

 

If network connectivity is disrupted intermittently, the 

options discussed in Section 2 are applicable here also. We 

recall that the options are storing output batches, storing input 

batches, and dropping batches before or after the current 

computation. The requirement of storage space for pending 

input batches and/or output batches is inevitable. Less space 

will be needed for output batches due to (i) storage of one 

batch per computation in contrast to all input batches for that 

computation and (ii) computations such as aggregation 

producing outputs that are likely to be much smaller in size 
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than any input or at least all inputs put together. Here also, 

nodes in the hierarchy could be heterogeneous and may follow 

different options. 

 

Considerations for overlapping and non-overlapping 

groupings of several batch-sets are similar to those for 

grouping batches from a single source case. Several QoS 

parameters can be applied for the groups for different options. 

Some of them for non-overlapping groupings where out-of-

order messages are ignored are: 

 

• the number of complete batch-sets; 

• the number of missing batch-sets; 

• minimum number of batches in a processed batch-set; and 

• average number of batches from a child. 

 

For example, in a grouping of 5 batch-sets from 4 children, 

the quantities mentioned above for the sets of batches 

((1,1,1,1),(2,2,-,2),(-,3,-,3),(5,-,5,5),(-,6,-,6)) will be 1 (for the 

first batch-set), 1 (for the fourth batch-set), 2 (with respect to 

the third batch-set) and 14/6 (with 6 batch-sets), respectively. 

(Here, "-" denotes messages arriving out-of-order messages 

and hence being dropped.) Different aggregations for several 

groups of batch-sets can also be considered.We note that 

grouping of individual out-of-order messages may result in 

reduced out-of-order among messages relevant for the entire 

group. For example, with grouping of three batch-sets from 

three children, for the batches arriving in the sequence (1,2,1), 

(2,1,3) and (3,3,2), there is no out-of-order messages with 

respect to the entire group. 

  

4. HETEROGENEOUS INPUTS 

 

We assume an arbitrary rooted tree for the fog 

infrastructure. Leaf nodes could be at different levels. In the 

following, we will assume that each source input is different 

and that computation performed at each node is different. 

 

We will first consider the processing of a batch-set, 

consisting of one batch per source. In general, each input batch 

will be processed first individually and then together with 

other input batches (or the batches derived from them). For 

example, we consider a fog architecturewhere each of the 

three inputs x, y and z is processed individually first, then 

(derived batches from) x and y are processed together and then 

all the three are processed together. We refer to the 

computation done on a set S of batches as C(S). Each of these 

computations is decomposed into sub-computations and then 

grouped into cj’s for execution at respective nodes. Let the 

corresponding sequences of computations be 

C(x),C(y),C(z),C(x,y) and C(x,y,z). For each C(S), the analysis 

as in the homogeneous case can be applied. We focus on the 

nodes where batches from different subtrees are combined. 

We refer to them as merging nodes. For simple exposition, we 

will take a single sub-computation for each set S, namely, 

c1(x),c1(y),c1(z),c2(x,y) and c3(x,y,z). 
 

First, we consider synchronous arrival and synchronous 

execution of batch-sets Bi consisting of {xi,yi,zi}.At merging 

nodes, we assume that if input batches from one or more 

children are not available, then the computation cannot be 

done. With out-of-order batch arrival, the options are the 

following: 
 

• Store the batches in the pending sets and process a 

batch-set when it is complete, that is, when all the 

input batches corresponding to that batch-set have 

arrived. 

• At any (synchronous) step, if all the input batches in 

the expected batch-set are not available, ignore the 

batch-set. 
 

The options when network connectivity is disrupted are the 

same as in the homogeneous inputs case. We note that 

computations on the dropped batch-sets will not be done in 

any ancestors. This was called ancestral-abort in [7]. 
 

We now consider asynchronous arrival of the individual 

batches.For simple illustration, we consider the execution of 

c2,i(x,y), where only the batches (derived from) x and y are 

combined.We refer to the batches as x-batch and y-batch for 

convenience. The frequencies of generation of x- and y-

batches may be different. We assume that the computation is 

triggered each time a new x- or y- or both batches arrive. In 

the first case, the most recent y-batch is used, in the second 

case, the most recent x-batch and in the last case both new 

batches are used for the computations. To be able to identify 

consistent pairing of the batches, we assume a global 

timestamping of the batches. We assume integer counter 

values as timestamps and index the batches with these 

timestamps. An example sequence of arrival of the batches, in 

correct order, is given in Table 1. Here, for example, y3 is 

paired with x1, and also with x4.We note that the indices of x-

batches (similarly, y-batches) may not be continuous.  

 
Table 1: Timestamped Sequence 

 

x1 

 

 

x4 

x5 

x6 

... 

y1 

y2 

y3 

 

 

y6 

... 
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Table 2: Indexed Timestamped Sequence 

 

x1,1 

x1,2 

x1,3 

x2,4 

x3,5 

x4,6 

... 

y1,1 

y2,2 

y3,3 

y3,4 

y3,5 

y4,6 

… 

 

Now, we consider out-of-order message delivery. Then,x-

batches and y-batches may arrive out of order at the merging 

node. We can store the batches in the respective pending sets, 

wait for a while for late-arriving batches and then order the 

batches correctly and pair them. For example, at some stage, if 

we assume that all batches with timestamps less than or equal 

to 6 have arrived, then the sequence shown in Table 1 can be 

formed and used for pairing. Batches arriving very late, very 

much out-of-order, can be ignored. Suppose, for instance, that 

y3 has not arrived yet when we do the pairing. Then, we will 

end up pairing x4 with y2 and also x5 with y2. This causes 

inconsistency, in addition to not being able to use y3, and QoS 

is affected. 

 

Suppose that after y1, y6 arrives, perhaps after some time. 

Then, we will not know whether there are some yi’s in 

between. Suppose, with each yj, the batch-id of the previous y-

batch is sent. Then, on the arrival ofy6, we would know about 

the existence ofy3. However, until y3 arrives, we will not know 

the existence of y2. Thus, some mechanism can be 

implemented to indicate possible late arrivals of at least some 

batches. 

 

To avoid the inconsistencies mentioned above, batches can 

be indexed with both batch number (independent of 

timestamp) and global timestamp as in Table 2. The batches 

with the same timestamp can be combined. We note that this 

is as in the case of synchronous execution of batch-sets. The 

timestamp synchronizes the batch-sets. 

 

5. RELATED WORKS 

 

Consistencies of continuous executions have been discussed 

widely in the literature in the context of stream processing. 

The subcomputations are treated as transactions in Conway 

[8], Meehan et al. [9] and Botan et al. [10]. Serializability of 

the entire computation on a batch, treated as a composite 

transaction, is discussed in Gürgen [11] and Oyamada et al. 

[12]. Serializability of continuous queries is discussed in 

Vidyasankar [13]. Distributing computations in fog 

architectures has been described in Andrade et al. [14], 

Mortazavi et al. [15] andVidyasankar [6]. The property that 

computations at some levels are non-conflicting and hence 

they need not be order preserving has been used in 

Transactional Topologies [16]. Order preserving computations 

have been discussed in stream processing in Li et al. [17] and 

Shen et al. [18], and for Big Data Streams in Xhafa et al. [19]. 

 

6. DISCUSSION AND CONCLUSION 

 

In fog architectures, stream inputs are processed in several 

stages at nodes in different levels. In a hierarchical structure, 

at each node, the computation is over the input batches that 

arrive from the children, producing an output batch which is 

sent to the parent. In this paper, we have addressed several 

issues relating to obtaining order preserving executions when 

messages do not arrive in correct order. We have discussed 

mechanisms for performing computations in correct order, by 

storing some batches temporarily and/or dropping some 

batches. The former option causes a delay in processing and 

the latter option affects QoS. We have brought out some trade-

offs between processing delay and storage capabilities of the 

nodes, and also between QoS and the storage capabilities. 

Here, only transient storage of batches is considered, not 

persistent store for the results of the computation. 

 

We have identified several QoS parameters that are relevant 

in this context. All of them deal with the non-inclusion of a 

batch in a computation. This can be identified at the node 

where the computation is done and its effect on the 

appropriate QoS parameter can be used at that node and also 

transmitted to the parent as part of the context associated with 

the output batch. The context may include batches explicitly 

with ids or just implicitly, for example, that a batch has been 

dropped. For doing this, batches need to be indexed. A natural 

place for indexing is the source level. However, in many 

applications, sources connect to gateways that filter the source 

input batches and pre-process them. The batches that are 

dropped in that level may not be relevant for the computations. 

Hence the (output) batches at the gateway level may be 

indexed. The gateways are expected to have the contextual 

information such as id, location, and other deployment details 

of the sources (sensors). Hence, indexing at that level may be 

more comprehensive than at the source level. 

 

When the batches are processed individually throughout the 

entire hierarchy, the initial indexing may be adequate. 

However, when several batches are combined and processed 

together at some level, new index could be given to the output 

batch. (One example is assigning the largest batch index of 

that group, when the batches arriving at the next level need not 

have consecutive indexes.) That is, depending on the context 
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that is attached to the output, separate independent indexing 

can be used at different levels, rather than carrying the initial 

index throughout. 

 

Several non-hierarchical fog infrastructures have been 

proposed in the literature, for example, clustered, vehicular 

and smart-phone in [3]. These can be modeled by extending a 

hierarchy by replacing single nodes with clusters of nodes 

where the nodes within a cluster can communicate with each 

other in peer-to-peer fashion. Several sub-computations may 

be assigned to a cluster. They will be executed by one or more 

nodes in the cluster based on their processing and storage 

capabilities. Message transmissions among the nodes in a 

cluster may not have delay, loss and out-of-order properties. 

Even if they do, a cluster on the whole may have adequate 

capacity to store input and/or output batches to do the 

computations in correct order. Thus, our considerations in this 

paper need to be applied to inter-cluster communications only. 
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