
 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 15 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

Order Preserving Stream Processing In Fog

Computing Architectures

K. Vidyasankar

Department of Computer Science, Memorial University of Newfoundland,

St. John’s, Newfoundland, Canada

Abstract—A Fog Computing architecture consists of

edge nodes that generate and possibly pre-process (sensor)

data, fog nodes that do some processing quickly and do

any actuations that may be needed, and cloud nodes that

may perform further detailed analysis for long-term and

archival purposes. Processing of a batch of input data is

distributed into sub-computations which are executed at

the different nodes of the architecture. In many

applications, the computations are expected to preserve the

order in which the batches arrive at the sources. In this

paper, we discuss mechanisms for performing the

computations at a node in correct order, by storing some

batches temporarily and/or dropping some batches. The

former option causes a delay in processing and the latter

option affects Quality of Service (QoS). We bring out the

trade-offs between processing delay and storage

capabilities of the nodes, and also between QoS and the

storage capabilities.

Keywords— Fog computing, Order preserving

computations, Quality of Service

1. INTRODUCTION

nternet of Things (IoT) is about making things smartin

some functionality, and connecting and enabling them to

perform complex tasks by themselves. A “thing” is any

object of interest with some communication capability.

IoT applications include Connected Vehicles, Smart Grid,

Smart Cities, HealthCare and, in general, Wireless Sensors

and Actuators Networks [1]. Billions of devices are expected

to be made smart in the very near future. They will produce

massive amounts of data, requiring enormous amount of

computations. In cloud-based IoT environment, the

computations are delegated to the cloud. The cloud is certainly

scalable with respect to processing capability and storage.

However, many applications require quick real time

computations and local actuations, and the latency involved in

communicating with the cloud is not tolerable. Further,

sending huge amount of data to the cloud requires high

network bandwidth and incurs considerable delay. In addition,

in many applications, 24/7 connectivity to the cloud may not

be available. To overcome these constraints, afog computing

architecture has been proposed recently [1, 2, 3, 4]. It consists

of edge nodes that generate and possibly pre-process (sensor)

data, fog nodes that do some processing quickly and enable

any actuations that may beneeded, and cloud nodes that may

perform further, detailed analytics for long-term and archival

purposes.

Fog computing typically involves continuous processing of

stream data that are input to the edge devices. The data consist

of tuples. They are processed in batches of tuples. Each

processing instance at a node uses some input batches and

produces an output batch which is sent to the parent of that

node (except at the cloud level) for further processing. The

computation to be done on a batch is decomposed into sub-

computations to be executed at the different nodes in the fog

architecture. Edge and fog nodes typically have limited

storage, compute and network connectivity capabilities.

Hence, the computations need to be distributed carefully

among the processing nodes. Guaranteeing consistency of the

executions is very important. Consistency issues arise for sub-

computations at the individual nodes as well as the entire

computations on individual batches and computations over

sequences of input batches.

In this paper, we consider each sub-computation at a node as

a transaction. We also assume serial executions of these

transactions in each node. We relate consistency to

serializability of these transactions at every node. In several

applications, the computations on the sequence of batches are

expected to preserve the order in which the batches arrive

from the sources. This is the consecutive serializability

requirement for the transactions. In some cases, the sub-

computations at some nodes, especially at lower levels of the

hierarchy, may not be required to follow batch order, that is,

the sequence can besaga[5], with the order being restored at

higher levels. This helps also for scalability where the

computations at a level can be distributed over multiple nodes

and the results forwarded to a single node in the next higher

level. Then the input batches in the higher level may not arrive

according to the batch order. Unreliable network connectivity

may also produce out-of-order message delivery. In this paper,

we focus on achieving consecutive serializability at a node in

the presence of out-of-order message delivery. We do this by

I

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 16 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

storing some input batches temporarily and/or dropping some

batches. The first option requires storage capacity and also

causes delay in processing whereas the second option affects

the accuracy of the continuous executions. This affects Quality

of Service (QoS). We identify some QoS parameters that are

relevant in this context. We discuss different execution options

that offer trade-offs between QoS and storage capacities of the

processing nodes.

We consider the simple case of inputs from a single source

in Section 2. We consider individual executions of the input

batches as well as their combined executions. We consider

processing batches from multiple input sources in Section 3

and multiple heterogeneous input sources in Section 4. We

discuss some related works in Section 5. We conclude in

Section 6.

2. SINGLE INPUT SOURCE

We use the basic definitions given in Vidyasankar [6]. We

consider a hierarchy (rooted tree) V of nodes v. It consists of n

levels. In this section, we consider the simple case of a single

input source. Then, the hierarchy is a simple path of length

n−1. The node in the path in jth level will be vj. Here, vn refers

to the cloud, v1 to the edge and the intermediate nodes to the

fog. We assume that stream data is generated at level 0. The

edge devices at level 1 themselves may generate some or all of

this data. We separate the generation into another level for

notational convenience. Each node vj has processing

capability Pjand storage capacity Sj, each expressed in

appropriate units. The source input batches are numbered

sequentially. We refer to the ith batch as bi. Each batch bi is

processed in one or more nodes. The computation for bi is

referred to as C(bi). We consider a decomposition of C(bi) into

sub-computations as

C(bi) = c1,i+c2,i+ · · · +cn,i.

Such decompositions will bebased on the semantics of the

applications and of the computations. Hereeach cj,iis to be

executed at level j, in the given sequential order of the levels.

The sum of the computations until level j is referred to as

Cj,i(with capital C). That is,

Cj,i= c1,i+ · · · +cj,i.

Then, Cn,i= C(bi).

As stated earlier, we assume in this paper that the individual

cj,i’s are executed atomically and serially in each level j. We

denote the processing requirement and storage requirement for

cj,i as p(cj,i) and s(cj,i), respectively. Obviously, we must have

Pj≥p(cj,i) and Sj≥ s(cj,i). With each cj,i, we associate an input

batch In(cj,i) and an output batch Out(cj,i).

Several (devices in) nodes may have limited range of

transmission. Nodes have to be placed such that dataflow from

one level to the next is possible. To facilitate this, some nodes

could be placed just to receive data from the lower level and

send it to upper level. (This may involve storing some data

temporarily.) We call these relay nodes. Sub-computation

done in such a node will be nil. Output batch of this

computation is the same as the input batch.

We discuss serializable executions of Cj,i’s. We define the

following.

(1) C is the set of computations cj,i’s for a given set of

batches.

(2) ≺B is the batch order.

(3) ≺L is the level order.

(4) ≺ is ≺B ∪≺L.

(5) A history H over (C, ≺) is a sequence of cj,i’s in C

obeying ≺.

(6) A history H is globally serial if it is a sequence of

C(bi)’s, that is, all the cj,i’s for each i occur

consecutively in H. It is globally serializable if it is

equivalent to a globally serial history.

Some batches may be processed only partially. That is, C(bi)

may only be Ck,i(bi), for some k, k<n. The above definition

applies to such computations also.

2.1 INDIVIDUAL PROCESSING

We first consider processing of the batches individually at

each level. Then, consecutive serializability of Cj,i’s, at each

level j, is guaranteed if ck,i’s are executed at each level k

between 1 and j serially according to the batch order. (Recall

that we are assuming atomic execution of each cj,i.) In the

following, we look at the ways of obtaining serial order

effectively when output batches from one level may arrive at

the next level out of order.

If cj,i’s are not conflicting with each other, then an out-of-

order execution is serializable. Then, inputs may be processed

as they arrive and the corresponding outputs sent to the next

level. This option is very favorable for horizontal scalability.

Batches may be split and processed in multiple nodes in the

same level provided the combined computations will

constitute cj,i(bi). However, an out-of-order execution together

with an out-of-order message delivery from the current level

to the next might amplify the extent of the out-of-order in the

arrival of batches in the next level. (The extent of out-of-order

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 17 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

can be characterized in many ways: (i) how late a batch

arrives, that is, the number of batches with greater ids that

come before this batch, (ii) how early a batch arrives, namely,

the number of batches with smaller ids that come after this

batch, (iii) the number of late or early arriving batches, (iv)

averages over thedelay or too early arrival, etc.)

In the following, we consider the case where cj,i’s are

conflicting.

• Out-of-order inputs (messages) can be kept in a

pending set, and the executions themselves can be

done in correct order when the respective batches

arrive. This involves waiting, causing delay in

execution, and requires storage space for the pending

set. Depending on the extent of the out-of-order, both

the delay and the required amount of storage space

will vary.

• Without pending set, executions can be done for

batches arriving in increasing order of their ids, as

they arrive, and late-arriving batches can be ignored

(dropped). This implies that the dropped batches are

processed only partially, up to the previous level. No

storage space is required here. In the example

sequence (1,8,4,2,5,7,9,3), batches (with ids) 1, 8 and

9 will be processed and the remaining will be

ignored.

• Without pending set, executions can be done for

batches in the correct consecutive order of their ids.

Out-of-order batches (those that arrive too early) can

be ignored. In the above example sequence

(1,8,4,2,5,7,9,3), batches 1,2 and 3 will be processed

and the remaining ignored.

• A limited storage space can be kept for the pending

set and early-arriving out-of-order messages that

cannot be added to the pending set can be ignored.

For example, with (1,8,4,2,5,7,9,3), if storage space is

available only for three batches, after batches 8,4 and

5, batches 7 and 9 might be ignored. (Other options

regarding which three batches to store can also be

exercised.) Similarly, out-of-order messages arriving

later than a certain amount of delay can be ignored.

We define drop ratio as the number of batches dropped

compared to the total number of batches. We note that, in the

above options, a trade-off exists between drop ratio and

storage space, and between drop ratio and processing delay.

Message loss is equivalent to dropping the message due to

excessive delay.

If network connectivity is disrupted intermittently and hence

output batches cannot be transmitted immediately after the

executions, then the following options exist:

• When storage space is available, the options are the

following. Here, two pending sets are used, one for

storing input batches and the other for storing output

batches.

o Store output batches in the output pending

set and send several of them together when

connectivity is restored. Continue

processing the input batches. (This option

can be followed even when network

connectivity is available, if transmitting

several batches together will be cheaper than

sending them one at a time.)

o Stop processing until the output batch is

sent, and store the incoming batches in the

input pending set.

o Store output batches in the output pending

set until connectivity becomes available, and

also store input batches in the input pending

set until they can be processed. Continue

processing. This option is suitable when

input arrives from the lower level as a set of

batches.

• When sufficient storage space, for output batches

and/or pending sets, is not available, the options are

the following.

o Drop the output batch thus terminating the

processing of the corresponding batch and

continue processing the input batches.

o Stop processing until the output batch is

sent, and drop the batches that are incoming

in the mean time, thus terminating their

executions.

Here also, we observe a trade-off between drop ratio and

storage space. Nodes in the hierarchy could be heterogeneous.

Different nodes may follow different options. Out-of-order

execution may be acceptable at some levels, and correct order

required at certain levels. This amounts to cj,i’s being non-

conflicting at the former levels and conflicting in the latter

ones. Then, the execution options may be chosen

appropriately. We also note that allowing some out-of-order

execution will reduce drop ratio. That is, there is a trade-off

between the extent of the out-of-order and drop ratio.

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 18 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

2.2 COMBINING MULTIPLE BATCHES

At any level, several input batches may be combined and

processed together. That is, the computation at vjcould be

cj(bi:k), combining cjfor batches bito bk. The combined output

will be sent to vj+1. An example is when the frequencies of

executions at different levels are different. For instance, c1

may be performed every 5 seconds and c2 performed every 10

seconds. Then, the outputs of two executions of c1 may be

processed together in one execution of c2. Another situation is

when network connectivity is not always available to send

data from one level to the next level and the output batches

corresponding to several computations kept and sent together

when connectivity becomes available.

In the following discussions, we use examples where three

batches are combined.

2.2.1 NON-OVERLAPPING GROUPINGS

(1) Grouping of consecutive batches:

Wait until all the relevant batches arrive and then process.

Delay and storage space considerations discussed in the single

batch processing case are applicable here also. In addition, we

need to consider the following.

(a) Suppose batches 1, 2 and 3 are to be grouped, and 2 arrives

very late (or does not arrive due to message loss). Then, we

can drop that batch. Then, we can do one of the following:

• drop batches 1 and 3, that is, the entire group;

• do the computation for batch 1 alone (if the

application semantics allows it) and combine batch 3

with 4 and 5; or

• combine batches 1, 3 and 4 if the application

semantics allows grouping of a broken sequence of

batches.

All these options relate to QoS differently: (i) absence or

presence of broken sequences and, in the latter case, the

number or percentage of broken sequences and (ii) fixed or

variable size groupings.

(b) The batches for latter groupings may become available

before those for earlier groupings (for example, (4,5,6) before

(1,2,3)). If the computations are not conflicting, they can be

processed in any order. Otherwise, they have to be processed

in the correct batch order. If (4,5,6) grouping is processed first

and then we find that batch 2 has to be dropped, the options

are dropping 1 and 3 also or processing them either

individually or by combining them.

(2) Grouping of non-consecutive batches:

As and when sufficient number of batches are available, the

grouping can be done. The only storage space required will be

for the batches waiting for the grouping.

2.2.2 OVERLAPPING GROUPINGS

An example is (1,2,3), (2,3,4), (3,4,5), etc. After 1 and 2,

suppose 5 arrives. Then wait for 3. When 3 arrives, combine

(1,2,3). Then, wait for 4, etc. Whichever batches need to

arrive, wait for them. Here, suppose 3 does not arrive for a

long time and so it is dropped. Then, groupings (1,2,4),

(2,4,5), etc. can be considered. Another possibility is dropping

(1,2,3), (2,3,4) and (3,4,5), namely, all the originally intended

groupings with 3. The choice would depend on the application

semantics of ‘consecutive’ batches. Here also, different

options affect QoS differently. The delay and the storage space

factors are the same as with non-overlapping groupings

3. MULTIPLE HOMOGENEOUS INPUT SOURCES

In this section, we consider multiple input sources, all

producing similar data that are to be processed the same way.

The hierarchy is a tree. We consider a general height-balanced

tree. (The discussion in the next section covers arbitrary trees.)

We again separate the data generation part into level 0 and

each source feeds to, that is, sends its output to a distinct node

in level 1. Thus, each node in level 1 has one child.

We consider the case where, at each level, each node

performs the same computation. (This restriction is also

relaxed in the next section.) Each node in level 1 will process

its source input and send its output to its parent. Each node in

level j, for 1 <j <n, will process the inputs from all its children

and will send a single output batch, at the end of processing, to

its parent.

We will first consider the case where all sources generate

data synchronously. We refer to one such set of batches as a

batch-set. We first consider synchronous processing of the

batch-sets. That is, at each step, one batch arrives from each

child and the set of these batches is processed. The batch-sets

are indexed sequentially. A batch-set with index iis referred to

as Bi. A computation at a node vjin each level j combines the

computations cj(x) of all the source input batches x in a batch-

set that are input to the descendants of vjin level 1. The

computation required for Bi isC(Bi), decomposed into c1(Bi)

+c2(Bi) + · · · +cn(Bi).

We now consider out-of-order message delivery from one

level to another. We assume that the communication between

any two nodes (a parent and a child) is independent of the

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 19 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

communications between other pairs of such nodes. Therefore,

the extent of the out-of-order will vary with respect to

messages from different children. In the following, we

illustrate the options with an example where the messages

from only one child arrive out-of-order and messages from all

other children arrive in correct order. We consider the example

sequence (1,8,4,2,5,7,9,3) for messages from child x. Input

batch from x with batch id k is denoted xk.

• The executions are done in correct consecutive order

when all the inputs for the corresponding batch-set

have arrived. Until then, the incoming batches are

kept in separate pending sets, one for each child. For

the sequence (1,8,4,2,5,7,9,3), after processing B1,

the pending set for x will store inputs for batch-set ids

8 and 4 and pending sets for the other children will

store 2 and 3 until x2 arrives. Then, the computation

can be done for B2. After three further steps, the

pending set for x will have (8,4,5,7,9) and other

pending sets will have (3,4,5,6,7). On arrival of x3, B3

will be processed, followed by B4 and B5, waiting for

x6 for the processing of B6, and so on. This involves

waiting, causing delay in execution, and requires

considerable storage space for the pending sets.

• We can reduce the size of the pending sets

considerably as follows. Executions can be done in

the correct consecutive order of the batch-sets with

the batches arriving from children in the correct

order, and not waiting for the batches of that batch-

set from other children; when these batches arrive

later, they are ignored. Out-of-order batches from

other children with greater ids (those arriving too

early) are stored in the pending sets, and used when

their turns arrive. In our sequence (1,8,4,2,5,7,9,3),

after B1, batch-sets B2 and B3 will be processed

without the inputs from child x. Batches 8 and 4 will

be stored in the pending set for x. Then, B4 will be

processed with the newly arriving batches from other

children and the one stored in the pending set for x,

ignoring x2. Batch-set B5 will be processed with

batches from all children, and B6 with inputs from all

except x, storing 7 in the pending set of x, and so on.

o This implies executions on partial batch-

sets. This affects QoS relating to whether

there are executions on partial batch-sets

and, if so, a measure of the density of the

partial sets, for example, how many batches,

how well they represent various

geographical regions, etc.

o The execution can be subject to receiving

batches from a minimum number of

children, to make it meaningful. Otherwise,

no execution may be done, resulting in

dropping the entire batch-set in that level.

This affects QoS differently: the drop ratio

can be categorized as batch drop ratio and

batch-set drop ratio.

• A variation in the above option is dropping the out-of-

order inputs (those with greater ids, 8 in the above

example), instead of storing in the pending set. That is, all

out-of-order messages are dropped. Then, no pending sets

are kept.

Combinations of the above options are possible, especially

when the extent of the out-of-order is expected to be small.

The first option of keeping the batches in the pending sets

until all the inputs of the next batch-set arrive can be used for

a while. At some stage, if the storage space becomes

insufficient or the delay becomes too much, executions with

partial batch-sets can be done. If the computations on different

batch-sets are not conflicting, then the batch-sets canbe

processed soon after all their input batches are received. For

example, in the sequence (1,8,4,2,5,7,9,3), B4 can be processed

without waiting for B3 (in the case of not opting for executions

on partial batch-sets). This will also reduce the number of

entries in the pending sets.

We note that, as illustrated in the above example, if the

inputs from even one child are out-of-order, the inputs from all

other children have to be kept in the pending sets for correct,

consecutive, order of execution.

Allowing for non-synchronous arrival of input batches (at

any level, including the source level) and hence non-

synchronous execution is straightforward. The batches from

each input can be kept in the respective pending sets and when

a batch-set is complete it can be processed. The processing

could be in the correct order or any order. At some stage, an

incomplete batch-set can either be dropped or processed as

such.

If network connectivity is disrupted intermittently, the

options discussed in Section 2 are applicable here also. We

recall that the options are storing output batches, storing input

batches, and dropping batches before or after the current

computation. The requirement of storage space for pending

input batches and/or output batches is inevitable. Less space

will be needed for output batches due to (i) storage of one

batch per computation in contrast to all input batches for that

computation and (ii) computations such as aggregation

producing outputs that are likely to be much smaller in size

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 20 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

than any input or at least all inputs put together. Here also,

nodes in the hierarchy could be heterogeneous and may follow

different options.

Considerations for overlapping and non-overlapping

groupings of several batch-sets are similar to those for

grouping batches from a single source case. Several QoS

parameters can be applied for the groups for different options.

Some of them for non-overlapping groupings where out-of-

order messages are ignored are:

• the number of complete batch-sets;

• the number of missing batch-sets;

• minimum number of batches in a processed batch-set; and

• average number of batches from a child.

For example, in a grouping of 5 batch-sets from 4 children,

the quantities mentioned above for the sets of batches

((1,1,1,1),(2,2,-,2),(-,3,-,3),(5,-,5,5),(-,6,-,6)) will be 1 (for the

first batch-set), 1 (for the fourth batch-set), 2 (with respect to

the third batch-set) and 14/6 (with 6 batch-sets), respectively.

(Here, "-" denotes messages arriving out-of-order messages

and hence being dropped.) Different aggregations for several

groups of batch-sets can also be considered.We note that

grouping of individual out-of-order messages may result in

reduced out-of-order among messages relevant for the entire

group. For example, with grouping of three batch-sets from

three children, for the batches arriving in the sequence (1,2,1),

(2,1,3) and (3,3,2), there is no out-of-order messages with

respect to the entire group.

4. HETEROGENEOUS INPUTS

We assume an arbitrary rooted tree for the fog

infrastructure. Leaf nodes could be at different levels. In the

following, we will assume that each source input is different

and that computation performed at each node is different.

We will first consider the processing of a batch-set,

consisting of one batch per source. In general, each input batch

will be processed first individually and then together with

other input batches (or the batches derived from them). For

example, we consider a fog architecturewhere each of the

three inputs x, y and z is processed individually first, then

(derived batches from) x and y are processed together and then

all the three are processed together. We refer to the

computation done on a set S of batches as C(S). Each of these

computations is decomposed into sub-computations and then

grouped into cj’s for execution at respective nodes. Let the

corresponding sequences of computations be

C(x),C(y),C(z),C(x,y) and C(x,y,z). For each C(S), the analysis

as in the homogeneous case can be applied. We focus on the

nodes where batches from different subtrees are combined.

We refer to them as merging nodes. For simple exposition, we

will take a single sub-computation for each set S, namely,

c1(x),c1(y),c1(z),c2(x,y) and c3(x,y,z).

First, we consider synchronous arrival and synchronous

execution of batch-sets Bi consisting of {xi,yi,zi}.At merging

nodes, we assume that if input batches from one or more

children are not available, then the computation cannot be

done. With out-of-order batch arrival, the options are the

following:

• Store the batches in the pending sets and process a

batch-set when it is complete, that is, when all the

input batches corresponding to that batch-set have

arrived.

• At any (synchronous) step, if all the input batches in

the expected batch-set are not available, ignore the

batch-set.

The options when network connectivity is disrupted are the

same as in the homogeneous inputs case. We note that

computations on the dropped batch-sets will not be done in

any ancestors. This was called ancestral-abort in [7].

We now consider asynchronous arrival of the individual

batches.For simple illustration, we consider the execution of

c2,i(x,y), where only the batches (derived from) x and y are

combined.We refer to the batches as x-batch and y-batch for

convenience. The frequencies of generation of x- and y-

batches may be different. We assume that the computation is

triggered each time a new x- or y- or both batches arrive. In

the first case, the most recent y-batch is used, in the second

case, the most recent x-batch and in the last case both new

batches are used for the computations. To be able to identify

consistent pairing of the batches, we assume a global

timestamping of the batches. We assume integer counter

values as timestamps and index the batches with these

timestamps. An example sequence of arrival of the batches, in

correct order, is given in Table 1. Here, for example, y3 is

paired with x1, and also with x4.We note that the indices of x-

batches (similarly, y-batches) may not be continuous.

Table 1: Timestamped Sequence

x1

x4

x5

x6

...

y1

y2

y3

y6

...

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 21 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

Table 2: Indexed Timestamped Sequence

x1,1

x1,2

x1,3

x2,4

x3,5

x4,6

...

y1,1

y2,2

y3,3

y3,4

y3,5

y4,6

…

Now, we consider out-of-order message delivery. Then,x-

batches and y-batches may arrive out of order at the merging

node. We can store the batches in the respective pending sets,

wait for a while for late-arriving batches and then order the

batches correctly and pair them. For example, at some stage, if

we assume that all batches with timestamps less than or equal

to 6 have arrived, then the sequence shown in Table 1 can be

formed and used for pairing. Batches arriving very late, very

much out-of-order, can be ignored. Suppose, for instance, that

y3 has not arrived yet when we do the pairing. Then, we will

end up pairing x4 with y2 and also x5 with y2. This causes

inconsistency, in addition to not being able to use y3, and QoS

is affected.

Suppose that after y1, y6 arrives, perhaps after some time.

Then, we will not know whether there are some yi’s in

between. Suppose, with each yj, the batch-id of the previous y-

batch is sent. Then, on the arrival ofy6, we would know about

the existence ofy3. However, until y3 arrives, we will not know

the existence of y2. Thus, some mechanism can be

implemented to indicate possible late arrivals of at least some

batches.

To avoid the inconsistencies mentioned above, batches can

be indexed with both batch number (independent of

timestamp) and global timestamp as in Table 2. The batches

with the same timestamp can be combined. We note that this

is as in the case of synchronous execution of batch-sets. The

timestamp synchronizes the batch-sets.

5. RELATED WORKS

Consistencies of continuous executions have been discussed

widely in the literature in the context of stream processing.

The subcomputations are treated as transactions in Conway

[8], Meehan et al. [9] and Botan et al. [10]. Serializability of

the entire computation on a batch, treated as a composite

transaction, is discussed in Gürgen [11] and Oyamada et al.

[12]. Serializability of continuous queries is discussed in

Vidyasankar [13]. Distributing computations in fog

architectures has been described in Andrade et al. [14],

Mortazavi et al. [15] andVidyasankar [6]. The property that

computations at some levels are non-conflicting and hence

they need not be order preserving has been used in

Transactional Topologies [16]. Order preserving computations

have been discussed in stream processing in Li et al. [17] and

Shen et al. [18], and for Big Data Streams in Xhafa et al. [19].

6. DISCUSSION AND CONCLUSION

In fog architectures, stream inputs are processed in several

stages at nodes in different levels. In a hierarchical structure,

at each node, the computation is over the input batches that

arrive from the children, producing an output batch which is

sent to the parent. In this paper, we have addressed several

issues relating to obtaining order preserving executions when

messages do not arrive in correct order. We have discussed

mechanisms for performing computations in correct order, by

storing some batches temporarily and/or dropping some

batches. The former option causes a delay in processing and

the latter option affects QoS. We have brought out some trade-

offs between processing delay and storage capabilities of the

nodes, and also between QoS and the storage capabilities.

Here, only transient storage of batches is considered, not

persistent store for the results of the computation.

We have identified several QoS parameters that are relevant

in this context. All of them deal with the non-inclusion of a

batch in a computation. This can be identified at the node

where the computation is done and its effect on the

appropriate QoS parameter can be used at that node and also

transmitted to the parent as part of the context associated with

the output batch. The context may include batches explicitly

with ids or just implicitly, for example, that a batch has been

dropped. For doing this, batches need to be indexed. A natural

place for indexing is the source level. However, in many

applications, sources connect to gateways that filter the source

input batches and pre-process them. The batches that are

dropped in that level may not be relevant for the computations.

Hence the (output) batches at the gateway level may be

indexed. The gateways are expected to have the contextual

information such as id, location, and other deployment details

of the sources (sensors). Hence, indexing at that level may be

more comprehensive than at the source level.

When the batches are processed individually throughout the

entire hierarchy, the initial indexing may be adequate.

However, when several batches are combined and processed

together at some level, new index could be given to the output

batch. (One example is assigning the largest batch index of

that group, when the batches arriving at the next level need not

have consecutive indexes.) That is, depending on the context

 IT in Industry, vol. 7, no.1, 2019 Published online 27-Mar-2019

Copyright © K.Vidyasankar, 22 ISSN (Print): 2204-0595

2019 ISSN (Online): 2203-1731

that is attached to the output, separate independent indexing

can be used at different levels, rather than carrying the initial

index throughout.

Several non-hierarchical fog infrastructures have been

proposed in the literature, for example, clustered, vehicular

and smart-phone in [3]. These can be modeled by extending a

hierarchy by replacing single nodes with clusters of nodes

where the nodes within a cluster can communicate with each

other in peer-to-peer fashion. Several sub-computations may

be assigned to a cluster. They will be executed by one or more

nodes in the cluster based on their processing and storage

capabilities. Message transmissions among the nodes in a

cluster may not have delay, loss and out-of-order properties.

Even if they do, a cluster on the whole may have adequate

capacity to store input and/or output batches to do the

computations in correct order. Thus, our considerations in this

paper need to be applied to inter-cluster communications only.

ACKNOWLEDGEMENTS

This research is supported in part by the Natural Sciences

and Engineering Research Council of Canada Discovery Grant

3182.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu & S. Addepalli (2012)“Fog computing and

its role in the internet of things”, Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, MCC ’12, pp 13–16,

New York, NY, USA, ACM.

[2] F. Bonomi, R. Milito, P. Natarajan & J. Zhu (2014) “Fog computing: A
platform for internet of things and analytics”, In N. Bessis and C. Dobre,

editors, Big Data and Internet of Things: A Roadmap for Smart

Environments, pp169–186, Springer International Publishing, Cham.

[3] C. Chang, S. N. Srirama& R. Buyya (2017)“Indie fog: An efficient fog-

computing infrastructure for the internet of things”,Computer, Vol. 50,
No. 9, pp 92–98.

[4] A. V. Dastjerdi& R. Buyya(2016)“Fog computing: Helping the internet
of things realize its potential”,Computer, Vol. 49, No. 8, pp 112–116.

[5] K. Vidyasankar (1991)“Unified theory of database serializability”,
FundamentaInformatica, Vol. 1, No. 2, pp 145-153.

[6] K. Vidyasankar (2018a)“Distributing computations in fog architectures”,
TOPIC’18 Proceedings. Association for Computing Machinery.

[7] K. Vidyasankar (2018b)“Atomicity of executions in fog computing
architectures”,Proceedings of the Twenty Seventh International

Conference on Software Engineering and Data Engineering (SEDE-18).

[8] N. Conway (2008)“Transactions and data stream processing”, Online

Publication, pages 1–28. http://neilconway.org/docs/stream_txn.pdf.

[9] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T.

Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, & H.

Wang (2015) “ S-store: Streaming meets transaction processing”,Proc.
VLDB Endow., Vol. 8, No. 13, pp 2134–2145.

[10] I. Botan, P. M. Fischer, D. Kossmann, & N. Tatbul (2012)“Transactional
stream processing”, Proceedings EDBT, ACM Press.

[11] L. Gürgen, C. Roncancio, S. Labbé& V. Olive (2006)“Transactional

issues in sensor data management”, Proceedings of the 3rd International
Workshop on Data Management for Sensor Networks (DMSN’06),

Seoul, South Korea, pp 27–32.

[12] M. Oyamada, H. Kawashima, & H. Kitagawa (2013)“Continuous query

processing with concurrency control: Reading updatable resources

consistently”, Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, pp 788–794, New York, NY, USA,

ACM.

[13] K. Vidyasankar (2017) “On continuous queries in stream processing”,

The 8th International Conference on Ambient Systems, Networks and

Technologies (ANT-2017), Procedia Computer Science, pp 640–647.
Elsevier.

[14] L. Andrade, M. Serrano& C. Prazeres (2018)“The data interplay for the
fog of things: A transition to edge computing with IoT”,Proceedings of

the 2018 IEEE International Conference on Communications (ICC),

IEEE Xplore.

[15] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips & E. de Lara
(2017)“Cloudpath: A multi-tier cloud computing framework”,

Proceedings of the Second ACM/IEEE Symposium on Edge Computing,

SEC ’17, pp 20:1–20:13, New York, NY, USA, ACM.

[16] storm.apache.org/releases/1.0.6/Transactional-topologies.html.

[17] Jin Li , Kristin Tufte, VladislavShkapenyuk, VassilisPapadimos,

Theodore Johnson & David Maier (2008) “Out-of-Order Processing: A

new Architecture for high-performance stream systems”, PVLDB ’08,
pp 274-288, VLDB Endowment.

[18] Zhitao Shen, Vikram Kumaran, Michael J. Franklin, Sailesh
Krishnamurthy, Amit Bhat, Madhu Kumar, Robert Lerche& Kim

Macpherson (2015) “CSA: Streaming engine for internet of things”,

Data Engineering bulletin, Vol. 38, No. 4, pp 39-50, IEEE Computer
Society.

[19] F. Xhafa, V. Naranjo, L. Barolli& M. Takizawa (2015)“On streaming
consistency of big data stream processing in heterogeneous clusters”,

Proceedings of the 18th International Conference on Network-Based

Information Systems. IEEE Xplore.

