
 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 1 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

A Centralized Network Management Application
for Academia and Small Business Networks

Dewang Gedia
1
 and Levi Perigo

2

1 Interdisciplinary Telecom Program, University of Colorado

Boulder 530 UCB, Boulder, Colorado, USA 80309

Abstract—Software-defined networking (SDN) is reshaping the
networking paradigm. Previous research shows that SDN has

advantages over traditional networks because it separates the control

and data plane, leading to greater flexibility through network

automation and programmability. Small business and academia

networks require flexibility, like service provider networks, to scale,

deploy, and self-heal network infrastructure that comprises of cloud

operating systems, virtual machines, containers, vendor networking

equipment, and virtual network functions (VNFs); however, as SDN

evolves in industry, there has been limited research to develop an

SDN architecture to fulfil the requirements of small business and

academia networks. This research proposes a network architecture

that can abstract, orchestrate, and scale configurations based on

academia and small business network requirements. Our results show

that the proposed architecture provides enhanced network

management and operations when combined with the network

orchestration application (NetO-App) developed in this research. The

NetO-App orchestrates network policies, automates configuration

changes, secures container infrastructure, and manages internal and

external communication between the campus networking

infrastructure.
Keywords—Ansible, Automation, Clair, Flask, Kubernetes,

Magnum, Network Management System, Network Programmability,
NetO-App, OpenStack, OpenContrail, OpenFlow, Orchestration,
Python, SDN.

I. INTRODUCTION

Software-defined networking (SDN) pronounced its presence

in networking, but the attempts to create SDN architectures

that can address the needs of academia or small business

networks have been limited [13]. According to Cisco Systems,

small business networks require highly secure and reliable

data networks that meet rigorous requirements such as remote

workers, accessing customer data from any place and time,

and cost-effective support of new applications [31]. Likewise,

academia teaching and research lab networks need to be

highly secure from internal and external threats, have

flexibility to connect remotely for research collaboration with

other universities, and possess cost-effective infrastructure to

support changing course objectives and limited budgets [33].

Network infrastructures that employ network elements such as

cloud operating systems, virtual machines (VMs), containers,

traditional vendor networking equipment, and virtual network

functions (VNFs), constantly need efficient control and

configuration management mechanisms to dynamically cater

to changing workloads. These environments are subjected to

software and hardware restrictions, repetitive deployments and

configurations, and dynamic business requirements. Academic

institutions, and small business enterprises, which are typically

defined as possessing less than 500 employees in the United

States and less than 250 employees in Europe, need to adopt

an infrastructure that is efficient to configure and manage,

inexpensive to deploy and operate, highly scalable, easy to

operate, and secured from internal and external threats [32,17].

While SDN can be difficult to define, the Open Networking

Foundation (ONF) defines an SDN architecture as a

networking model that is directly and programmatically

configured, decouples the network control functions from the

forwarding functions, logically centralizes the control, and is

open standards-based and vendor-neutral [3]. In an academia

or small business networking environment, the infrastructure

incorporates both SDN and traditional devices and must use an

architecture that can flexibly manage both traditional and SDN

domains [13].

Traditional network engineering relies on device configuration

via the command line interface (CLI) and does not scale to

meet the complexity of multi-vendor SDN/traditional

networks in academia and small businesses. Programmability

of traditional devices is cumbersome because they lack open,

programmable interfaces, which prohibits developers from

programming the network in the most efficient method

[21,22]. Furthermore, integrating SDN and traditional

networks is difficult due to the disparities between how they

function: traditional networks operate with the help of MAC

address tables and routing tables, whereas SDN with

OpenFlow uses flow entries in flow tables. These disparities

need a different methodology to integrate as a system, and

research indicates that only a limited number of tools can

handle these problems efficiently [23].

Network automation reduces the manual effort required for

completing routine tasks and decreases the amount of human

error caused by traditional, manual CLI configurations.

Starting with scripting and progressing to intelligent network

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 2 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

control and efficient translation and deployment of network

plans and policies, network automation is a key tool to

facilitate traditional network management and operations.

While using information from configuration files and

deploying routine configurations onto multiple network

devices is a step towards automation, this approach can be

made more dynamic by creating a graphical user interface

(GUI) that automates configuration from minimal user input,

simplifies the process, abstracts the network infrastructure

from the programmer, because it does not require the

programmer to know vendor-specific CLI commands, and

reduces the number of misconfigurations [25].

Network programmability coupled with network automation

can address SDN and traditional network limitations and can

also provide a better platform for centralized configuration

management of the cloud infrastructure in academia and small

business networks. Cloud computing is a rapidly growing

paradigm for consuming data center resources in the form of

Services: Platform-as-a-Service (PaaS), Infrastructure-as-a-

Service (IaaS), and Software-as-a-Service (SaaS) [15]. Private

cloud such as OpenStack offers academia and small business

networks control over the infrastructure, choice of

hardware/software tools, and delegates control over the

desired network security; thus, minimizing the scope of

network vulnerability from attacks. The benefits network

virtualization and cloud computing offer when combined with

SDN and network automation provide a framework that is

suitable for small businesses and academia.

The remainder of the paper is organized as follows: Section 2

provides a review of the existing body of knowledge, state of

the art applications, and how our scheme extends it. Sections 3

and 4 describe the methodology and results of our experiment

respectively. Section 5 concludes our research and addresses

scope for future enhancements.

II. RELATED WORK

SDN has changed management of network infrastructure by

decoupling the network control plane and the data plane [17].

With the help of ONF, there has been wide scale industry

adoption of the OpenFlow protocol as the standard

southbound interface (SBI) to communicate with pure and

hybrid OpenFlow SDN switches. Although there have been

attempts to create network architectures that are easily

manageable, scalable, fault-tolerant, and inexpensive, there

has been limited results that meet all these requirements for

small businesses and academia [13].

Small business and academia network environments are

constrained by limited software, hardware, and network

capabilities. They also are hindered by repetitive tasks, limited

administrative skillset, and the capability to dynamically adapt

to constantly changing user workloads. Furthermore, the

confined financial budgets dedicated to small business and

academia network environments prove to be a monumental

restriction. In such an agile and restrictive environment, it

becomes essential for the small business and academia

network infrastructure to meet or exceed these minimum

requirements to have state-of-art network facilities with

limited resources. The NetO-App developed from this study

addresses these limitations by using free and open source

software, a user-friendly web interface, and provides an

advantage of an automated and orchestrated infrastructure that

reduces operating cost and increased ROI [27]. NetO-App

efficiently addresses these requirements by using Magnum

service as an orchestrator provided by OpenStack Kolla that

deploys and manages Docker container hosts that are

lightweight, quickly scalable, and require less storage space;

thus, catering to small business and academia network

requirements. Magnum service uses a Container Orchestration

Engine (COE) such as Kubernetes to deploy and manage a

container cluster which can be utilized in academia for hosting

course labs as it optimizes the available resources and reduce

the operational cost. Magnum service provides a value

addition to the OpenStack based network architecture in small

business networks as well because it automates the container

management by leveraging Kubernetes APIs. This helps

reduce the errors caused by manual CLI commands thus

optimizing the operational cost for the small businesses.

Kubernetes also helps benefit the organization with its self-

healing, and monitoring capabilities thereby providing high-

availability for business applications at reduced costs.

With the advent of cloud computing, more Internet

applications such as DNS, DHCP, and web servers are

deployed in the cloud. To manage these applications, a greater

level of automation and orchestration is required. SDN helps

build a level of abstraction and orchestration for VM

management where hypervisors leverage the real-time

network information before migration to minimize network-

wide communication costs of resulting traffic dynamics [1]. A

large-scale SDN capable infrastructure, the OF@TEIN

playground, was initially targeted to build and operate

OpenFlow enabled networks, but shifted its efforts to establish

an open and shared consortium for new potential collaborators

with the intention to build and operate a federated multi-site

SDN-Cloud-leveraged infrastructure using the ONOS SDN

controller, OpenStack cloud, and Quagga router [2]. Using

Quagga to facilitate the transition from a traditional network to

an SDN has provided a platform for exchanging border

gateway protocol (BGP) routing information [3]. Although

such an architecture provides inter-platform networking

capabilities, it still lacks centralized application for

configuration and management of a multi-platform

infrastructure that our proposed model provides.

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 3 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

One of the motivations for developing SDN was to overcome

challenges faced by data centers. An architectural framework

provided by ONF is Central Office Re-architected as Data

Center (CORD). This platform helps service providers deliver
a cloud-native, open, and programmable platform to enable

services to end-users [4]. This architecture primarily enables

residential, mobile, and enterprise subscribers to appropriately

route traffic using defined network policies residing on the

XOS (CORD controller) node. While CORD tackles policy

based routing through XOS, the framework, lacks necessary

components for deploying and scaling VMs/containers, and

incorporating multi-vendor traditional network hardware

present in small business network environments. The proposed

NetO-App specifically addresses such business network

requirements and appropriately automates the VM/container

deployment.

Open Network Automation Platform (ONAP) aims to provide

a comprehensive platform for the real-time deployment and

policy-driven orchestration of network functions for cloud

providers and operators to automate new services [20].

Additionally, it offers the capability to monitor the service

behavior based on the specified design and provides healing

capabilities by scaling the resources to adjust any demand

variations. Although the ONAP platform can deliver service

design, creation, and lifecycle management in an OpenStack

VM environment, it lacks capabilities to host and monitor the

VNFs in a container platform which increases the expense of

this platform due to the exponential storage space required for

VMs over containers. Furthermore, the amount of dedicated

hardware required to operate ONAP is difficult for small

business network environments. NetO-App addresses these

limitations by leveraging Ansible to proactively monitor

containers and VMs hosted in network, and can be deployed

on a single server. Another disadvantage of ONAP is that it

has a complex architecture and needs a thorough

understanding of every module to tailor desired services

needed for a small business network. NetO-App provides a

simple architecture that is easy to control through a user-

friendly web portal to dynamically create VMs/containers.

The COSIGN project highlighted the integration of SDN

controllers and the OpenStack orchestrator for optimizing the

selection of resources in a virtual data center [5]. A fabric

topology using SDN helps overcome the bandwidth utilization
and network scalability challenges posed by fat tree topology
[6]. However, the approaches still fail to deliver self-healing

incident-response (pre-defined) capabilities in an orchestrated
cloud environment that NetO-App addresses.

As shown in [7], integrating OpenStack with SDN provides

benefits when managing complex and virtualized applications.

With a better GUI, it is easy to manage SDN topologies which

were demonstrated by integrating OpenStack and the Ryu

SDN controller [7]. While transitioning from traditional

networks toward centralized SDN, SDN placement planning

can help achieve better controllability in the early 70% of the

deployment [8]. Using the OpenDaylight (ODL) SDN

controller for achieving network programmability (flow

control and network isolation) in an OpenStack environment

through the provided Neutron plugin can help provide

centralized management in cloud operating systems as well
[9]. However, the Neutron service fails to provide the

necessary encapsulation for the traffic flowing between

different tenants. Our proposed model overcomes this

limitation by employing the OpenContrail SDN controller.

As new SDN design architectures emerge, a framework is

required to manage and coordinate different implementations.

The concept of a network hypervisor was introduced in [10]

which provides a platform to use the existing low-level

application programmable interfaces (API) provided by

different SDN implementations in an autonomous system and

convert it to high-level APIs. This can ease the task of creating

an SDN; however, it fails to leverage capabilities to remotely

configure and manage infrastructure through a centralized

application. It was found in [12] that when integrated into an

OpenStack environment, ODL has inferior performance in

terms of delay and throughput when compared to Floodlight

and Ryu, but the ODL controller showed higher resiliency.

In this paper, the primary research question we answered was
“Can an application provide centralized network manage-

ment to configure and manage multi-platform, Software

defined, and traditional networking environment for

academia and small business networks?”

This research question was strategically divided into sub-

problems that addressed an individual technological research

aspect to collectively answer the primary research question.

A. Can we achieve orchestrated control to configure and
manage multi-platform network elements using an
application?

B. Can we achieve a scalable, secure, and resilient control
infrastructure for remote network management and
configuration?

C. Can BGP be used to facilitate interconnectivity between
VM/containers, SDN, and traditional networks?

The contribution of this paper is to design and implement a

network architecture and application that can be used together

to orchestrate multi-platform environments, such as virtualized

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 4 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

cloud, SDN, and traditional networks in academia and small

business networks.

III. RESEARCH OVERVIEW

3.1 Environment

The network architecture developed for this research was

comprised of an overlay and underlay network (Fig. 1). The

overlay network consists of a multi-node OpenStack setup

which is operating on five x86 servers, VM with Docker

containers for specific network applications (core-network

VM), OpenContrail and Floodlight SDN controllers, micro-

service VMs with Kubernetes COE and container applications,

and the network orchestration application (NetO-App)

developed from this study. The underlay network is composed

of x86 servers running Ubuntu, OpenFlow-capable switches

including Arista, Cisco, Dell, HP, OvS, OpenSwitch, and

Pica8, which establish an OpenFlow v1.3 channel to the

Floodlight container for the SDN, and traditional networking

equipment including ADTRAN, Arista, Cisco, and Juniper.

For academia, micro-service VMs could represent any student

VM that needs the functionality of specific networking

applications such as SDN controller, virtual router, virtual

switch, or a development environment for the purpose of

course lab objectives. In case of small business, micro-service

VMs could represent a node for service-chaining different

network applications for offering a business service.

Fig. 1: Network Architecture Design

3.2 Hypervisor and Containers

For this study, OpenStack was selected as the private-cloud

OS because it provides a virtualized, cloud infrastructure that

leverages abstraction, orchestration, and automation

capabilities for the network infrastructure comprising of VMs

and containers. In the network architecture created as a result

of this research, we implement a specific project forked from

the master OpenStack project, OpenStack Kolla. OpenStack

Kolla provides Representational State Transfer (REST) APIs,

greater programmability, increased resource management,

network virtualization, visibility and real-time monitoring, as

well as multi-tenancy support. OpenStack Kolla deploys the

OpenStack services in containers; thus, reducing the

underlying server storage and achieves rapid boot time of the

services with auto-scaling functionality [15]. The auto-scaling

functionality of OpenStack Kolla implements a service called

Senlin which facilitates automatic VM redundancy because it

can dynamically distribute dedicated compute resources due to

failure, user-defined thresholds, and utilization. This helps

achieve high availability of core network services such as

DNS, DHCP, and SDN controller application present within

core-network VM.

Containers have proved to be advantageous over their VM
counterpart because of their portability, highly responsive

lifecycle management, orchestration, agility, and elasticity
[11]. In this research, we have selected Docker containers to
be used within VMs in the OpenStack Kolla environment. The
core-network services we deployed in Docker were the DHCP

server, DNS server, and the SDN Floodlight controller.

To achieve orchestrated control over VM configuration and

management, and to provide per tenant based topology for

academia and small business networks use-cases, Magnum

service was deployed in OpenStack Kolla to configure and

manage Kubernetes COE VMs that hosts various micro-

service containers. Kubernetes was selected as the COE due to

its scaling, self-heal, and monitoring capabilities [37].

Magnum uses Heat to provision VMs having Kubernetes and

Docker containers per the defined cluster template.

Additionally, it exposes Keystone APIs which helps provide

multi-tenancy to the user projects. It also helps provide

network security to the projects by using authentication

management. Magnum leverages underlying OpenStack

services such as Neutron to provide network control and

isolation for individual cluster, Nova to resource-limit the

VMs, Cinder to help provide volume management, and Heat

to provision the defined Magnum cluster. Magnum provides

cluster access to external networks by using the external load

balancing feature thus, providing remote lab access for the

students to their respective cluster. The advantage of using

Kubernetes as a COE to build micro-service VMs in academia

is that it maintains the cluster health by re-instantiating any
failed containerized application in-case of any

misconfiguration performed by the students. Likewise,

Magnum can also provide benefits to small business networks

that need repetitive configuration, self-healing, and scaling

capabilities for the container based micro-service

deployments. This is particularly useful in scenarios where

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 5 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

application service providers need to instantiate common

applications for new customers based on the subscribed

services. In such use-cases, a COE like Kubernetes can help

manage life-cycle of the containers by constantly monitoring

and self-scaling the micro-service application based on the

user demand. Another advantage of using Kubernetes as a

COE is that it offers high availability by migrating the user

traffic to a backup cluster during the roll out of updates to the

primary micro-service applications in small businesses. This

offers un-interrupted service to the customers thus, catering to

the SLA requirements [36]. Magnum offers Transport Layer

Security (TLS) support which provides certificate-based

authentication to communicate with the Magnum services.

Hence, this serves as a secure platform allowing only trusted

client certificates (authorized admins) to perform CRUD

operations on the micro-service VMs.

To secure containers from vulnerabilities, we integrated an

open-source solution offered by CoreOS called “Clair” [35].

Clair is a static security analysis tool that detects

vulnerabilities against the deployed container images. In order

to do so, it leverages “clair-api” to interface with the client

requests (in our case NetO-App user). Clair was deployed on

the OpenStack-Kolla infrastructure to communicate with core-

network containers and micro-service containers to detect

vulnerabilities periodically.

3.3 SDN Controllers

SDN implementations are evolving, but there has been limited

research on providing seamless interconnectivity between

varied platforms [26]. There is a need to adopt a routing

mechanism for inter-connectivity between VMs/containers

and both SDN and traditional networking devices. To achieve

this, our network architecture implements an OpenContrail

SDN controller to provide networking service for the

virtualized OpenStack Kolla environment, the Floodlight

controller for the OpenFlow SDN, and the vendor routers for

the traditional network. This is beneficial in this research

because OpenContrail has an intuitive Python REST API for

automation and utilizes BGP to connect both SDN and

traditional networks; thus, serving as an optimal solution for

bringing inter-platform connectivity between the OpenStack

Kolla environment and both the traditional and SDN devices.

The Floodlight SDN controller was implemented in this

research to control the SDN infrastructure via OpenFlow.

Floodlight was selected as the SDN controller because it is

well-tested and has well-defined APIs. The APIs of Floodlight

provide a documented menu which allows researchers to

create network control and management applications with

relative ease [12]. This was critical in this research because of

the need for abstraction and orchestration between platforms.

3.4 The NetO-App

The NetO-App developed from this research to manage and
configure multi-platform environments in academia and small
business networks was built using the Python programming
language. Python was selected because it has an object-
oriented design that provides high-level, built-in data types,

user-friendly data structures, and support libraries [14]. The
NetO-App is comprised of two primary modules: the

abstraction module and the implementation module (Fig. 2).

Fig. 2: The Python NetO-App model

3.5 The abstraction Python module

The abstraction module provides a front-end interface for

configuration, management, and network automation using the

Python Flask web framework. This module provides a user-

friendly GUI that abstracts the multi-platform network

infrastructure to the user and provides the user with flexibility

to select functions to orchestrate the entire network

architecture. This module calls appropriate Python script

based on the requested user-defined function on the web

interface. The Python script then invokes the implementation

Python module to carry out the necessary CRUD operations

on the network infrastructure thus abstracting the underlying

network infrastructure from the NetO-App user.

3.6 The implementation Python module

The implementation module is comprised of the following

sub-modules: Ansible, YAML, REST, and SSH. Each of the
sub-modules is used to configure and manage various parts of

the proposed network infrastructure environment.

To interact with network nodes for configuration, the

implementation module of NetO-App uses the Python-based

infrastructure automation framework Ansible. Ansible is a

configuration and automation tool [18] that is prevalent in the

industry for managing and configuring network devices and

servers [19]. It was designed to make remote configurations

quicker using SSH [18]. Ansible is agentless, so it does not

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 6 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

require an agent to be installed on the client; instead, it uses

SSH to push changes to the remote server or host defined in

Playbooks. Playbooks describe hosts and tasks and are defined

in YAML Ain't Markup Language (YAML) format [19].

Apart from SSH, Ansible can also communicate using APIs;

thus, extending the number of network elements that can be

configured using Ansible. For this research, Ansible is a tool

that can be used to configure the cloud, SDN, and traditional

networks.

IV. RESULT AND ANALYSIS

In the experiments, we answered the sub-problems defined in
section II to ultimately answer the primary research question.

4.1 Research sub-problem: Can we achieve orchestrated

control to configure and manage multi-platform network

elements using an application?

This research sub-problem guided the creation of NetO-App.

The NetO-App combined with the proposed network

infrastructure from this study provides a solution for

centralized network management of cloud, SDN, and

traditional networks that can dynamically push network

configurations to the overlay and underlay network devices

using SSH, Ansible, and REST. To make the solution user-

friendly, we have developed a Flask front-end that abstracts

the specific commands from the user. The user can make

changes via the GUI, and then the back-end implementation

module of NetO-App will execute the appropriate platform

configuration scripts such as Ansible, REST, or SSH. This

provides convenience to the user, without having to memorize

multiple vendor specific commands, or understand a

programming language. This abstraction layer is important to

the research because academic and small business network

environments do not have the dedicated, skilled resources that

other institutions have; thus, an intuitive web front-end is

paramount to the success of the academia and small business

network model. The NetO-App communicates via REST and

Ansible/SSH to dynamically configure and manage VMs

within the OpenStack Kolla environment and uses

Ansible/SSH to update or change configurations as described

within Ansible Playbooks. When the user clicks on desired

functions in the GUI, an appropriate Python script is executed,

which invokes the Paramiko module inside of Ansible to SSH

into either the VM, software-defined device, traditional

device, or all. In the event of making changes to an existing

configuration on any platform, the application checks for the

present configuration and only pushes configurations that need

to be updated; thus, providing efficiency and consistency

across relevant nodes.

The NetO-App takes the user input based on mandatory

parameters - hostname of node (on which VMs/containers

would reside), tenant name, number of Magnum cluster nodes

to deploy (preconfigured per the cluster template), and the
type of VMs/containers (Ryu controller/ONOS

controller/ODL controller/Mininet/OVS). Optional parameters

include – validation checks (verify VMs/containers are

configured per the user-defined requirements), and fresh

install (revert the VMs/containers back to the clean state).

Once the user has defined the parameters, NetO-App

specifically uses Ansible/SSH to instantiate and configure

VMs/containers per the requirement. The NetO-App user may

also request vulnerability scan against the deployed containers

to understand the need for updating container images to reduce

exposed vulnerabilities.

The NetO-App is beneficial in academia and small business

networks because it makes it easier for the network user to

orchestrate, manage, and configure a multi-platform

environment consisting of cloud, SDN, and traditional

networks from a centralized point without having to

understand the underlying vendor-specific CLIs, programming
language, or cloud operating systems. Furthermore, the NetO-
App is free and open source software which appeals to

academia and small business networks’ budgetary constraints.

4.2 Research sub-problem: Can we achieve a scalable,

secure, and resilient control infrastructure for remote

network management and configuration?

In our proposed model, we deployed multiple services, such as

Floodlight SDN controllers within Docker containers on the

OpenStack Kolla environment to provide a scalable and

resilient control infrastructure to manage and configure the

core network through SDN. We could provide resiliency in the

event of the failure of a core-network VM because the Senlin

service that is enabled within the OpenStack Kolla

environment constantly monitors core-network VM for

utilization. For example, when the threshold compute value of

the containerized SDN controller is reached, the Senlin service

spawns the secondary controller container and disables the

primary controller, providing high availability of the control

plane and optimizes network resource efficiency. Furthermore,

the OpenStack Kolla environment is hosted on multiple

physical servers, which provides dynamic resilience and

physical redundancy for the virtualized control platform.

To understand the amount of downtime achieved through the

automated OpenStack scaling approach, we conducted a test

that compared a manual configuration to an automated

configuration. It was found that manually it took 57 seconds to

create a secondary SDN controller whereas, Senlin could

detect and configure a secondary SDN controller (container)

in 1.2 seconds, and do it automatically without manual

intervention. We incrementally added the configuration time

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 7 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

based on the number of devices to understand the average

number of configured containers in a stipulated time. Fig. 3

demonstrates that it took approximately 15 seconds to

configure 10 controllers. This particularly demonstrates that

the current OpenStack approach deployed in this research can

reduce the downtime to seconds instead of minutes, and is

fully automated requiring no manual intervention to self-heal.

Fig. 3: Time taken to configure SDN controller manually

versus OpenStack automated approach

To provide orchestrated control over micro-service VMs, we

used OpenStack-Magnum service. This service helps perform

create, read, update, and delete (CRUD) functionalities on the

OpenStack VMs. Figure 4 shows the flow control logic with

respect to our developed NetO-App. The NetO-App user

defines the required parameters (number of VMs/cluster, and

Docker images to deploy on each VM) on the Flask UI. This

request invokes a Python script that leverages the Magnum

client to make a REST API call to “magnum-api.” This

request is backed by a Keystone authentication to validate the

user via secure access. “Magnum-api” accepts this request and

validates it with the keypair value. Once the request is

authenticated, “magnum-api” checks for the available quota to

deploy the cluster. If the defined resource limit exceeds the

available limit, “magnum-api” sends a “403 HTTP ERROR”

message to the user. In case the requested resource limit is

within the available quota, “magnum-api” generates a cluster-

name (in case not specified), creates database to store the

configuration metadata (as defined in the cluster-template),

and calls “magnum-conductor” to initiate the creation of

cluster. “Magnum-conductor” uses a Heat template to spawn

VMs using the underlying OpenStack services (Nova,

Neutron, Cinder). The cluster is then configured with

Kubernetes COE with the necessary container applications.

Once the cluster is created, “CREATE_COMPLETE”

message is sent back to the NetO-App dashboard. This

approach provides a one-touch provisioning capability to the

academia and small businesses that are constrained by limited

resources and skillset.

Fig. 4: COE Management flow using NetO-App

Since the container images are infrequently updated, it

possesses a risk of getting compromised by attackers over

time. Clair periodically ingests vulnerability metadata from

pre-configured set of data sources and stores it in the local

database. NetO-App user may also index the core-network and

micro-service container images with the set of “features”

(vulnerabilities) present in them to the local Clair database

using “clair-api.” When the NetO-App user queries the Clair

database for vulnerabilities present in deployed container

images, Clair co-relates the features with the vulnerabilities to

understand and report any risks back to the NetO-App user.

This approach may help identify the need to update core-

network and micro-service containerized applications based

on the reported risk severity thus, securing the containerized

applications in academia and small business networks from

threats.

Therefore, to achieve a scalable, secure, and resilient control

infrastructure for network management and configuration the

research from this study answered the sub-problem by

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 8 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

designing an architecture consisting of a virtualized cloud

environment using OpenStack, Docker containers for required

lightweight service functionality, Kubernetes for providing

health monitoring and self-healing capabilities, Clair for
securing containerized applications from exposed

vulnerabilities, and the NetO-App which monitors and

manages this environment to dynamically resolve physical and

virtual failures and configuration quickly.

4.3 Research sub-problem: Can BGP be used to facilitate

interconnectivity between VM/containers, SDN, and

traditional networks?

To provide the virtual and physical L2 and L3 external

connectivity, we used OpenContrail as a networking solution

that works with the neutron service of OpenStack to provide

cloud networking capabilities [24]. The OpenContrail

architecture consists of two main components: vRouter and

Controller. The OpenContrail controller uses Extensible

Messaging and Presence Protocol (XMPP) to communicate

with the vRouters and BGP/NETCONF to communicate with

the traditional networking devices. As shown in Fig. 5, the

control node present within the OpenContrail controller is

responsible for processing routing information and applying

them to the forwarding table of the vRouter service that

handles networking for the OpenStack Kolla environment. To

exchange routing information with the traditional vendor

routers, the control node uses BGP. Thus, the use of BGP by

the control node helps provide connectivity between

VMs/containers and SDN devices with the traditional BGP

speaking vendor routers.

OpenContrail provides REST APIs that are used by NetO-App

to dynamically orchestrate the configuration of the VNFs

inside of OpenStack. Therefore, the research answers this sub-

problem by using OpenContrail as the VNF manager within

OpenStack to communicate between the virtualized SDN and

the traditional networking environment via BGP. Additionally,

OpenContrail allows NetO-App to centralize control of this

platform through the built-in OpenContrail REST API.

V. CONCLUSIONS

In this paper, we propose a network architecture and

centralized network management application that can

configure and manage multi-platform, software-defined, and

traditional networking environments for academia and small

business networks. The academia and small business network

environment is subjected to limited software/hardware

resources, repetitive deployments and configuration changes,

Fig. 5: OpenStack-OpenContrail Networking Diagram

dynamic adaptability to changing business requirements on a

limited budget. It is essential for an academic and small

business organization to adopt an automated and orchestrated

infrastructure that is efficient to configure and manage,

inexpensive to deploy and operate, highly scalable, and

provides ease of operation. We achieved this by designing an

environment consisting of SDN, traditional networks, and

cloud architectures. By utilizing OpenStack Kolla, we created

a scalable, secure, and resilient control infrastructure for

remote network management, configuration, scalability, and

resiliency. OpenStack Kolla infrastructure was coupled with

Clair tool to identify exposed vulnerabilities in deployed

containerized applications thus, securing core-network and

micro-service containers deployed in academia and small

business networks. OpenContrail facilitated interconnectivity

between VMs, SDN, and traditional networks, through BGP

and the NetO-App developed from this research implemented
a user-friendly Flask front-end to abstract the underlying

technologies from the user by utilizing Ansible, SSH, and

REST to orchestrate the multi-platform cloud, SDN, and

traditional network. Academia and small business institutions

can deploy the network architecture and NetO-App designed

from this research to create a low-budget optimized network

that is platform independent, centrally managed, resilient,

scalable, easy to use, and inexpensive to implement.

The future scope of the research can also be enhanced by

leveraging the container monitoring capability provided by

Magnum to perform analytics based on the cluster data.

Furthermore, NetO-App has minimal self-healing capabilities.

NetO-App is able to execute predefined tasks upon a failure of

a respective service. The future scope of this research can be

improved by including a module for greater self-healing

capabilities using TensorFlow (machine learning) for various

failure scenarios [30]. This can be achieved by performing big

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 9 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

data analysis and dissecting traffic parameters and performing

actions to correct errors through TensorFlow. Specifically,

Grafana [28] and Platform for Network Data Analytics

(PNDA) [29] provide a platform for carrying out such analysis

which serves as a future scope of the research.

VI. REFERENCES

[1] R. Cziva et al, “SDN- based Virtual Machine Management for Cloud Data
Centers” in 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet). IEEE, 2014, pp. 388 - 394.
[2] A. Risdianto et al, “Leveraging Open-Source Software for Federated
Multisite SDN_Cloud Playground” in NetSoft Conference and Workshops,
2016 IEEE. IEEE, 2016, pp. 423 - 427.
[3] Software Defined Networking Definition [Online]. Available:
https://www.opennetworking.org/sdn-definition/. [Accessed: Oct. 15, 2017].

[4] ONF [Online]. Available: https://www.opennetworking.org/projects/cord/.
[5] S. Spadaro et al, “Orchestrated SDN based VDC Provisioning over Multi-
Technology Optical Data Center Networks” in 2017 19th International

Conference on Transparent Optical Networks. IEEE, 2017, pp. 1 - 4.
[6] L. Chen et al, “An SDN-Based Fabric For Flexible Data-Center Networks”

in 2015 IEEE 2nd International Conference on Cyber Security and Cloud
Computing. IEEE, 2015, pp. 121 - 126.
[7] S. Chen, and R. Hwang, “A scalable Integrated SDN and OpenStack

Management System” in 2016 IEEE International Conference on Computer
and Information Technology (CIT). IEEE, 2016, pp. 532 – 537.
[8] W. Wang, W. He, and J. Su, “Boosting the Benefits Of Hybrid SDN” in
2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 2165 - 2170.
[9] L. Wang et al, “Combining Neutron and OpenDaylight for Management

and Networking” in 2017 IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC). IEEE, 2017, pp. 457 - 462.
[10] S. Huang, and J. Griffioen, “Network Hypervisors: Managing the
Emerging SDN Chaos” in 2013 22nd International Conference on Computer

Communication and Networks (ICCCN). IEEE, 2013, pp. 1 - 7.
[11] H. Shimonishi, Y. Shinohara, and Y. Chiba, “Vitalizing data-center
networks using OpenFlow” in 2013 IEEE Photonics Society Summer Topical

Meeting Series. IEEE, 2013, pp. 250 - 251.
[12] O. Tkachova, M. Salim, and A. Yahya, “An Analysis of SDN-

OpenStack Integration” in 2015 International Scientific-Practical Conference

Problems of Infocommunications Science and Technology (PIC S&T). IEEE,
2015, pp. 60 -62.
[13] T. Huang, et. al., “A survey on Large-Scale Software Defined

Networking (SDN) Testbeds: Approaches and Challenges” in IEEE
Communications Survey & Tutorials. vol. 19 issue: 2, 2016, pp. 891 - 917.

[14] A. Rangola, “Applications of Python in Real World”[Online].
Available: https://www.invensis.net/blog/it/applications-of-python-in-real-
world/?utm_source=invensis-blog&utm_campaign=blog-
post&utm_medium=content-link&utm_term=benefits-of-python-over-other-
programming-languages. [Accessed: Oct. 10, 2017].
[15] OpenStack Kolla [Online]. Available:
https://wiki.openstack.org/wiki/Kolla.
[16] OpenContrail Networking [Online]. Available:

http://www.opencontrail.org/why-contrail-is-using-bgpmpls/.
[17] T. Bakhshi, “State of the Art and Recent Research Advances in
Software Defined Networking” in Wireless Communications and Mobile

Computing. vol. 2017, 2017.
[18] P. Venezia, “Puppet vs. Ceph vs. Salt vs. Ansible” [Online]. Available:
https://www.networkworld.com/article/2172097/virtualization/puppet-vs--

chef-vs--ansible-vs--salt.html [Accessed: 15th Dec. 2016].
[19] Ansible [Online]. Available: [Accessed: 30th Jan., 2017].

https://www.ansible.com/blog/2016-community-year-in-review.

[20] ONAP [Online]. Available: https://www.onap.org.
[21] L. Lwakatare, P. Kuvaja and M. Oivo, “An Exploratory study of
DevOps extending the dimensions of DevOps with practices”, in The

Eleventh International Conference on Software Engineering Advances.
[22] S. Sezer et al., "Are we ready for SDN? Implementation challenges for
software - defined networks," in IEEE Communications Magazine, vol. 51,

no. 7, pp. 36 - 43, July 2013. doi: 10.1109/MCOM.2013.6553676.
[23] O. Salman, I. H. Elhajj, A. Kayssi and A. Chehab, "SDN controllers: A
comparative study," in 2016 18th Mediterranean Electrotechnical Conference

(MELECON), Lemesos, 2016, pp. 1 - 6.

[24] OpenContrail SDN [Online]. Available: http://www.opencontrail.org/the-

importance-of-abstraction-the-concept-of-sdn-as-a-compiler/.
[25] E. Borjesson, and R. Feldt, “Automated System Testing using Visual
GUI Testing Tools: A Comparative Study in Industry” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation.
IEEE, 2012, pp. 350 - 359.
[26] L. He, et. al., “Design and Implementation of SDN/IP hybrid space
Information Network Prototype” in 2016 IEEE/CIC International Conference

on Communications in China. IEEE, 2016, pp. 1- 6.
[27] Cisco Automation Benefits [Online]. Available:
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-

management/network-services-orchestrator/white-paper-c11-738289.pdf.
[28] Grafana [Online]. Available: https://grafana.com.

[29] PNDA [Online]. Available: http://pnda.io.

[30] TensorFlow [Online]. Available: https://www.tensorflow.org.
[31] Small Business Network Basics, Cisco Systems. Available [online]:
https://www.cisco.com/c/en/us/solutions/small-business/resource-

center/connect-employees-offices/primer-networking.html.
[32] V. Ngugi, and C. Yoshida, “Digital Media Platform to Connect Small
and Medium Enterprises In Nairobi” in 2016 IEEE/ACIS 15th International
Conference on Computer and Information Science (ICIS). IEEE, 2016.
[33] Network Computing [Online]. Available:

https://www.networkcomputing.com/networking/sdn-good-match-

campus/677974592.

[34] OpenStack Magnum [Online]. Available:

https://wiki.openstack.org/wiki/Magnum.

[35] CoreOS Clair GitHub repository [Online]. Available:

https://github.com/coreos/clair#kubernetes.

[36] Kubernetes advantages for businesses [Online]. Available:
https://supergiant.io/blog/top-reasons-businesses-should-move-to-
kubernetes-now.
[37] M. Capuccino et al., “KubeNow: an On-Demand Cloud-Agnostic
Platform for Microservices-Based Research Environments” in arXiv, May

2018.

AUTHORS

Dewang Gedia, University of Colorado Boulder

Dewang Gedia is a Ph.D. student at the University of Colorado Boulder

having primary research focus in Network Functions Virtualization and
Software Defined Networks domain. He achieved his Master’s degree

from Interdisciplinary Telecom Program (ITP) at the University of

Colorado Boulder in 2017.

 IT in Industry, vol. 6, no.3, 2018 Published online 21-Aug-2018

Copyright © Dewang Gedia, 10 ISSN (Print): 2204-0595

Levi Perigo 2018 ISSN (Online): 2203-1731

Dr. Levi Perigo, University of Colorado Boulder

Dr. Perigo is a Scholar in Residence in Interdisciplinary Telecom
Program (ITP) at the University of Colorado Boulder where he focuses
on next generation networks, SDN/NFV, and network automation.

