

529

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

Extended Feature Set Construction for Efficient Triaging of Bug

Reports of Open-Source Software

Kulbhushan Bansal1, Dr. Harish Rohil2

1 Research Scholar, Deptt. of Computer Science & Engg., Ch. Devi Lal University, Sirsa, Haryana, India
2 Associate Professor, Deptt. of Computer Science & Engg., Ch. Devi Lal University, Sirsa, Haryana, India

Email: 1kul_bansal@yahoo.co.in, 2harishrohil@gmail.com

Abstract: Bug report Triaging is an active area of research

in the last few years. This is due to the rapid proliferation

of the software and apps which are critically required in

the market within a short period, and therefore, released

without thorough testing. This is essential as the “time-to-

market” has a profound effect on profit margins, whereas

software testing is a time-consuming process. However,

without thorough testing, software occasionally fails

during its working. At this time, the user is prompted to

write a bug report, and, in another case, a report is

automatically generated and sent to a central database.

This report has the details of what happened that cause the

software to malfunction. This form of testing, which is

done by software users is popularly known as Beta Testing,

in contrast to alpha testing, which is done by software

testing companies/ departments. A triager is a person or

program who reads the bug reports and classifies them

related to the bug identified. This classification is a central

issue of beta testing and studied in detail by many

researchers. Automatic classification involves machine

learning over natural language processing. Also, as prior

training is required to be delivered to the machine, a

training data set is required to be constructed to calibrate

the machine. The mathematical models of machine

learning classifiers work on feature sets, extracted from

raw data. In this research, techniques are presented for the

extraction of textual and Contextual features of the reports

which lead to the construction of a feature set with 40

features. Support Vector Machine (SVM) is implemented

over R package as the machine learning classier and the

results are compared with those of the benchmark

techniques.

Keywords: Triaging, Open-Source Software, Bug, Feature

Set

1. Introduction

Handling a vast number of bug reports sent by a large

number of software users need an organized approach.[1] Each

bug report is required to be analyzed for checking whether it

corresponds to a newly discovered bug or it is a duplicate of

an existing report.

As most of the reports are duplicates of each other,

possibly related to the same issue/bug, such reports are

attached, with one most detailed report as the master report, so

that the software developer, at the time of fixing the bug, gets

a much clear understanding of what happened at the time of

software malfunction. In this paper, the state of art models for

extraction of textual and contextual features is explained in

detail. These are vector space models which are further

extended with extended matching. The BM24 (Binary

Measure 25) model [2] used by Sun Microsystems is also

investigated with proposed extension techniques.

2. Vector Space Models for Textual Similarity Scores

Tf-idf is an abbreviation commonly used for the term

frequency-inverse document frequency. It is one of the most

common methods to evaluate how important a word is, in a

document in information retrieval or text mining, Tf-idf is a

very unique method to change the textual illustration of

information into a Vector Space Model, or converting it into

sparse textual features. Tf-idf weight is a term mostly used in

information retrieval and text mining. The term weight is an

arithmetical measure used to compute the importance of a

word in a document in a collection. The importance relates

substantially to the frequency of a word that appears in the

document and it is lowered by the number of times a word

occurs in the corpus. Search engines often use a variation of

the Tf-idf weighting scheme as an essential tool in scoring and

ranking a document's relevance according to the user’s query.

The VSM represents the features extracted from the

document. The first step for converting a document into a

vector space is to prepare a dictionary of terms present in the

document. To do this, one can simply choose all terms from

the document and change them to the dimension in the vector

space. VSM, interpreted in a mathematical sense, is a space in

which the text corresponds to a vector of numbers in place of

its original string textual representation. [3]

It is to be noted that terms like 'is' and 'the' are

ignored, as a consequence of stop word removal. The term

frequency is used to represent each term in the vector space,

term frequency is a measure of the number of times the term is

there in vocabulary E(t). Term-frequency can be defined as a

counting function:

𝑡𝑓(𝑡, 𝑑) = ∑

𝑥𝜖𝑑

𝑓𝑟(𝑥, 𝑡)

530

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

where 𝑓𝑟(𝑥, 𝑡) is a simple function defined as:

𝑓𝑟(𝑥, 𝑡) = {1 , 𝑖𝑓 𝑥 = 𝑡 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The 𝑡𝑓(𝑡, 𝑑) simply returns how many times is the

term 𝑡 present in document d. This can go on into the

formation of the document vector, which is represented by:

𝑣𝑑𝑛⃗⃗ ⃗⃗ ⃗⃗ = (𝑡𝑓(𝑡1, 𝑑𝑛), 𝑡𝑓(𝑡2, 𝑑𝑛), 𝑡𝑓(𝑡3, 𝑑𝑛)……… 𝑡𝑓(𝑡𝑛, 𝑑𝑛))

Since it has a collection of documents at this time

represented by vectors, these can be represented by a matrix

with |D| X F shape, in which |D| is the cardinality (number of

elements) of the document space, and F is the number of

features, in the view represented by the vocabulary size.

These matrices representing the term frequencies are

likely to be very less in number with a majority of terms

zeroed, and that is the reason why a common representation of

these matrices uses sparse matrices. The major problem with

the term-frequency approach is that it scales down rare terms

and scales up frequent terms which are extra instructive than

the high-frequency terms.

The tf-idf weight can be used to solve this difficulty.

The tf-idf measure gives a score of the importance of a word

to a document in the corpus, and this is the reason why tf-idf

incorporates local and global parameters. This is because it

takes into consideration not just the remote terms but also the

terms within the document collection. Tf-idf , effectively,

scale down the common terms and at the same time, scale up

the rare terms. For example, a term that occurs more than 20

times not necessarily be 20 times more significant.

The inverse document frequency is defined as:

𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔
|𝐷|

1 + |{𝑑: 𝑡 𝜖 𝑑}|

In which |{𝑑: 𝑡 𝜖 𝑑}| is the no. of documents in which

term appears, when the term-frequency function satisfy tf(t,d)

≠ 0, then 1 is supplemented in the formula to circumvent zero-

division.

Tf-idf formula is :

𝑡𝑓 − 𝑖𝑑𝑓(𝑡) = 𝑡𝑓(𝑡, 𝑑) 𝑋 𝑖𝑑𝑓(𝑡)

This formula is generally known as the weight of the

term. When there is a high term-frequency (tf) present in the

document which is the local parameter and a low document

frequency of a term in the whole corpus that is a global

parameter, a heavyweight of Tf-idf calculation is obtained.

Thus, the matrix for the document vector can be constructed as shown:

𝑀𝑡𝑟𝑎𝑖𝑛 = [𝒕𝒇(𝒕𝟏, 𝒅𝟏)𝒕𝒇(𝒕𝟏, 𝒅𝟐) 𝒕𝒇(𝒕𝟐, 𝒅𝟏)𝒕𝒇(𝒕𝟐, 𝒅𝟐) 𝒕𝒇(𝒕𝟑, 𝒅𝟏)𝒕𝒇(𝒕𝟐, 𝒅𝟑) 𝒕𝒇(𝒕𝟒, 𝒅𝟏)𝒕𝒇(𝒕𝟐, 𝒅𝟒)]𝑿[𝒊𝒅𝒇(𝒕𝟏) 𝟎 𝟎 𝟎 𝟎 𝒊𝒅𝒇(𝒕𝟐) 𝟎 𝟎 𝟎 𝟎 𝒊𝒅𝒇(𝒕𝟑) 𝟎 𝟎 𝟎 𝟎 𝒊𝒅𝒇(𝒕𝟒)]

The Cosine Similarity

The cosine similarity between the two vectors or two

documents in the Vector Space is an evaluation that computes

the cosine angle between them. The particular metric is a

dimension of the orientation and not magnitude, and it can also

be seen as an assessment between documents on a normalized

space because it does not only take into account the scale of

each word count of every document but also the angle between

the documents. The cosine of the angle between two document

vectors can be obtained using the cosine similarity equation of

the dot product between two vectors:

𝑐𝑜𝑠𝜃 =
𝑎 . 𝑏⃗

|𝑎 |. |𝑏⃗ |

Cosine Similarity creates metric shows the relation

between the two documents by looking at the angle in place of

magnitude, considering the following examples shown below:

Fig 2.1 Similarity Score: More for Vectors in the same

direction

It is important to note that even if there is a vector

that is pointing to a point distant from another vector, both can

still have a small angle and it is one of the major points on the

usage of Cosine Similarity. The dimensions tend to pay no role

for similarity score, as given by higher term count on

documents. Consider having a document with the word “sky”

which is appearing 600 times and some other document having

the word “sky” appearing 100, then the Euclidean distance

between them will be superior but the angle will still be small

since they are pointing to the same direction, and thus have a

large similarity score.

3. Classifications of Duplicate and Non-Duplicate Bug

Reports

In a duplicate bug report detection system, the

incoming bug report is subjected to a detection system which

then responds with a list of potential duplicate bug reports

related to the input report. The list should be sorted in

descending order of relevance to the queried bug report.

In our proposed approach, the generic textual

similarity approach is augmented with increased feature set

usage and the Latent Dirichlet Allocation approach.

The LDA approach is a topic modeling approach

which maps the bug reports to the most relevant topic which

may refer to the Non-Functional Attribute (NFA) of the

software (like Efficiency, robustness) or might be related to

the component of the software (like preferences, history, etc.)

Applying information-retrieval (IR) tools, the proposed model

takes the advantage of the knowledge of the software process

and product. [4,5]

531

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

The contextual word lists, consisting of NFA and

Component names, are compared to the bug reports and the

comparison results are analyzed as new features for the bug

reports, in addition to the primitive textual and features of the

bug reports, such as description, priority, type, component, etc.

proposed in Sun et al. work [2]. Then, this extended set of

bug-report features is used to compare bug reports and detect

duplicates. Simulations are done using R simulation and the

results demonstrate that the use of contextual features

improves bug report de-duplication performance. The

proposed approach is evaluated on a large bug-report data-set

from the Mozilla project About 115000 bug reports are

analyzed in simulation. In this research, the contextual word

lists are considered as components of the Mozilla Browsers

(For e.g. Preferences, history, etc.). Our method results in a

16.07% relative improvement in accuracy. This work makes

the following contributions.

1. It proposes the use of Topic Modeling to improve bug de-

duplication performance.

2. The proposed method along with the textual feature model

improves the accuracy of duplicate bug-report detection.

3. The effect of considering different contextual features on

the accuracy of bug-report de-duplication is systematically

investigated.

3.1 Proposed Model

3.1.1 Bug Report Format and Corpus for textual features

The bug report analysis structure considered in this

paper is specified below:

Fig 3.1 Corpus formation for Textual Features

The following formula is used for computing the

textual similarity score of any two bug reports.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐵1, 𝐵2) = ∑

𝑤𝜖𝐵1∩ 𝐵2

𝑖𝑑𝑓(𝑤)

where

𝑖𝑑𝑓(𝑤) = 𝑙𝑜𝑔2
𝐷𝑎𝑙𝑙

𝐷𝑡𝑒𝑟𝑚

The idf values are computed based on the corpus

formed by the document collection. As specified above, there

are 4 different types of corpus considered based on the format

of the bug report considered in this dissertation.

3.1.2 Contextual Features

The domain-specific contextual features are

computed using Latent Dirchlet Allocation as described.

Figure 3.2 shows the framework of the proposed technique.

Fig. 3.2 Proposed Framework of LDA Topic Modeling

3.2 Similarity Score based on Textual Features

Considering a generic format of bug reports

consisting of LDA Topics which are basically the non-

functional requirements of the software, title, and description,

the f-60 model can be described as shown:

Figure 3.3 Pairs of Textual similarity combinations

The Feature (similarity measurement) between two

reports can be extracted in the following way:

1. Topic to Topic

2. Title to Title

3. Description to Description

4. Title (R1) to Description (R2)

5. Description (R1) to Title (R2)

6. Title and Description took together (R1) - to- Title

and Description taken together (R2).

7. Title and Description took together (R1) to Title (R2).

8. Title and Description took together (R1) to

Description (R2).

9. Title and Description took together (R2) to Title (R1).

10. Title and Description took together (R2) to

Description (R1).

532

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

Considering each of the combinations as a separate

feature, the total number of different features would be 10.

Furthermore, one can compute four types of idf, as the bug

repository can form three distinct corpora. One corpus is the

collection of all the LDA Terms, another is the collection of

all Titles, the other is the collection of all the Descriptions and

the last one is the collection of all these three corpora taken

together.

The four types of idf computed within the four

different corpora are defined by idfNFR, idftitle, idfdesc, and

idfcombined respectively. The output of function f defined in

equation (3.1) depends on the choice of bag of words for R1,

the choice of a bag of words for R2, and the choice of idf.

Considering each of the combinations as a separate feature, the

total number of different features would be 10×4, which is

equal to 40. Aside from considering words, bigrams can also

be considered. A bigram refers to two consecutive words.

With bigrams, considering different combinations of bag of

words coming from idf computed based on summaries,

descriptions, or both, there are another 40 features which

would then bring the number of features extracted to 80.

3.3 Bug Repository of Mozilla Firefox (Bugzilla Issue

Tracker)

Few of the records corresponding to the issues

reported to the tracking system of Mozilla Firefox are

tabulated in table 4.1 shown below:

TABLE 3.1: SAMPLE RECORDS OF BUG REPOSITORY WITH BUG CATEGORY

Issue_

id

Compo

nent

Duplicat

ed_issue
Title Description Status

Resol

ution

Versio

n

Created

time

Resolved

time

10954
Preferen

ces

Dialup

properties

need to be

exposed

in prefs

The dialup properties of the

profile should be exposed in the

prefs panels so; the user has an

easy way to modify them. The

only other alternative would be

to; make people go to the profile

manager to edit them, but we

don't have that in; place either.

Let's try the prefs panel approach

first.

RESO

LVED

WON

TFIX

Trunk 7/30/1999

15:55

5/14/200

8 11:44

14871 General 269442

[Find]

Find

whole

word only

Please add Match Whole Word

Only option to browsers Find on

this page; dialog.

RESO

LVED

DUPL

ICAT

E

Trunk 9/24/1999

14:49

10/5/201

1 16:35

19118
Preferen

ces

Plug-In

Manager

(ui for

choosing

mime-

type-

plugin

associatio

ns)

I would really like a plug-in

manager for my browser that

allows me to choose; which mime

types are controlled by which

plug-ins.; In the browser

preferences window there should

be a plug-in manager with all;

available mime types listed.

Under each mime type, there

should be a list of; installed plug-

ins that can handle that mime

type. Radio buttons can be used

to; select the plug-in the user

prefers for that mime type.; ; For

example; ; audio/midi; O Live

Audio; O Live Update

Crescendo version 4.02; O

QuickTime Plug-in 4.0.3;

audio/aiff; O Live Audio; O

QuickTime Plug-in 4.0.3

RESO

LVED

WON

TFIX

Trunk 11/17/1999

14:58

1/29/201

3 11:48

533

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

83003 Bookma

rks &

History #NAME?

would like to see a command-line

option that allows the bookmark

window to be; opened on startup;

something like mozilla.exe –

bookmarks

RESO

LVED

WON

TFIX Trunk

5/28/2001

3:16

7/11/200

9 20:43

84106

File

Handlin

g

[FIX]Not

correctly

retrieving

post data

when

saving a

page or

frame

generated

from a

form

POST

From Bugzilla Helper:; User-

Agent: Mozilla/5.0 (X11; U;

Linux 2.4.5-1mdk i586; en-US;

rv:0.9+); Gecko/20010604; Build

ID: 2001060421; ; Mozilla does

not save the respond to a posted

form correctly.; Instead of saving

the posted reply; it saves the

form.; ; Reproducible: Always;

Steps to Reproduce:; 1.go to the

referenced form; 2.type in a URL

in the big text box (say

http://www.mozilla.org); 3.push

dump links; 4. The form correctly

displays the page source; 5. Now

try saving the output; 6. You get

the form itself and not the

response; Actual Results: You

get the form output; ; Expected

Results: You should get the

dumped page. You do get that in

Netscape

RESO

LVED

FIXE

D Trunk

6/4/2001

23:28

3/28/200

9 9:39

88541

Bookma

rks &

History

Show URI

in the

status bar

on mouse-

over of

Back/For

ward

menu

items

From Bugzilla Helper:; User-

Agent: Mozilla/5.0 (Windows; U;

Windows NT 5.0; en-US;

rv:0.9.1+); Gecko/20010627;

BuildID: 2001062704; ; When

right-clicking on the back button;

a list appears of previously

visited; pages. However; when

mousing over that list; the url for

the respective page; should

appear in the status bar.; ;

Reproducible: Always; Steps to

Reproduce:; 1. Load a page; for

example http://www.cnn.com; 2.

Click one of the article links on

the front page; 3. Once the article

loads; right-click on the back

button; 4. Move the mouse down

to the entry for CNN.com

Homepage; ; Actual Results: The

status bar doesn't change when

mousing over the links in; the

back-button history.; ; Expected

Results: The status bar should

show the URL for the link; in

this; case: http://www.cnn.com; ;

I searched for dups; but I didn't

come up with any. And; I wasn't

entirely sure; of the correct

component.

VERI

FIED

FIXE

D Trunk

6/30/2001

8:20

4/18/201

3 19:46

534

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

91774

Bookma

rks &

History

Localizati

on

problems

with

Bookmark

s Sorted

By menu

& History

Sorted By

menu

Localization problems with

Bookmarks Sorted By menu &

History Sorted By menu.; Sorted

by menu gets strings from

headers - wrong (can't localize it

in proper; way). It should have its

strings for example in mail

client.; ; Strings are from:;

http://lxr.mozilla.org/seamonkey/

source/xpfe/components/bookmar

ks/resources/locale/en-

US/bookmarks.dtd#68; to #74; ;

Instead of gettings labels from

headers add labels like this:;

sorted by.name.label; sorted

by.url.label; etc.

RESO

LVED

FIXE

D Trunk

7/21/2001

15:47

11/26/20

09 6:04

92073

Preferen

ces

UI to

allow

external

handlers

for

internal

types

For those who cannot update

QuickTime to 5.0.2 to solve bug

69719; and similar cases we need

options (in Preferences dialog) to

set; individual mime-types

(images...) to be processed by

Mozilla; internally even if they

are associated with another

application

RESO

LVED

WON

TFIX Trunk

7/24/2001

4:29

5/14/200

8 11:46

3.4 Creating Positive and Negative Examples

To train the SVM-based classier, it is important to

create a set of classified data so that the machine can be

trained over the manually classified data. From the term-

document-matrix obtained from the Mozilla bug repository,

the sample of which is shown above, we can match each

record with the other documents of the corpus to obtain a set

of master and duplicate bug reports as shown in the following

figure.

Figure 3.2 Preprocessing for creation of Positive and

Negative Examples

To train the SVM, it is needed to create a set of

positive and negative examples which are manually classified

on all the parameters considered in this paper; namely, the

textual, and contextual features. A stated previously, the

positive examples consist of all the bug reports identical to

each other; called duplicates and the negative examples consist

of all the bug reports corresponding to different bugs; called

non-duplicates.

4. Results and Analysis

The RPlot showing the most common terms in the

corpus, on a scale of size, following their relative frequencies,

is shown in figure 4.1

Figure 4.1. Word Cloud of most frequent terms in the

corpus

The clustering of Bug Reports of Mozilla Firefox, as

per the cosine similarity index is tabulated using R. It is shown

in figure 4.1.

535

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

Fig 4.1 Clustering of Bug Reports following the cosine

similarity index

Fig 4.2 Histogram of Euclidian Separation between Bug

Reports

TABLE 4.2: PARAMETER SPECIFICATIONS OF SVM

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

 parameter : cost C = 100

Linear (vanilla) kernel function.

Number of Support Vectors : 344

Objective Function Value : -34210.61

Training error : 0.018

The textual feature set can be obtained from tf-idf

measure which provides a total of 80 textual features. The

contribution of this work is to augment the extended feature

set of textual and categorical feature sets with contextual

features obtained from topic modeling using Latent Dirichlet

Allocation. The feature set for classification of duplicates and

non-duplicates, in terms of contextual measures, in the bug

repository can be done by the creation of positive and negative

examples. The positive and negative examples are created

from the Bugzilla repository which consists of a total of

115814 records.

Support Vector Machine is trained by creating a

training set from a pre-analyzed data set known as the training

data set. This training data set provides a means for supervised

learning. After training, the SVM can be tested over incoming

bug reports to obtain the precision and recall rate measures.

This classification of duplicates in terms of

contextual topics can be used to augment the feature set used

for the checking of duplicity in the bug repository. This gives

a significant improvement in the classification of the bug

reports related to a particular version of the software.

4.2 Performance Measures

The Precision Rate of the Trained SVM of the entire

set of bug reports is depicted in figure 4.10. The Recall rate of

the system is defined as a percentage of the relevant results in

the repository retrieved as search results in response to a

query. Recall rate is used as a measure of the effectiveness of

the duplicity checking method. The proposed scheme goes

well beyond the recall rates as achieved by Anahita alipour

et.al as it matches the incoming bug reports to domain-specific

topics which are the categories of bug reports. The recall curve

of the proposed scheme for topic modeling is depicted in

figure 4.5 below.

It turns out that the proposed scheme with 80 textual

features and LDA topic modeling results in about 15 percent

improvement in the number of similar bug reports detected

from the repository, as compared to only the domain-specific

topic modeling proposed by Anahita Alipour et.al.[7]

Fig 4.5 The Precision Rate of the Trained SVM. Horizontal

axes show the normalized False Positive Rate and the

vertical axes show the normalized True Positive Rate.

Fig. 4.6 Precision versus Recall measure of SVM

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0.01 0.03 0.05 0.07 0.09 0.11

Normalized
True Positive
[Proposed]

Normalized
True
Positive[7]

536

Copyright © Authors

IT in Industry, Vol. 9, No.3, 2021

ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

Published Online 4-05-2021

5. Conclusions

A system is proposed that automatically classifies

duplicate bug reports as they arrive thereby saving the

developer's time. The proposed system uses textual,

categorical, and contextual features. The contribution of this

paper is to extend the feature set used for the classification of

duplicated bug reports. This is done by augmenting the feature

set with the contextual features which relate the bug reports to

the domain-specific topics. This topic modeling is done by

identifying the topics and training a classifier for mapping bug

reports to the appropriate topic. Topic modeling using latent

Dirichlet allocation is used so to map a document to certain

topics through Dirichlet Distribution. Results are empirically

evaluated using the R statistical package. A dataset of 10,000

bug reports is analyzed from the Bugzilla project.

The proposed system can reduce development costs

by filtering out duplicate bug reports. It also gives much more

precision in the case of comparatively small software packages

having a relatively small number of topics to which a bug

report is to be matched. Moreover, there is a high probability

of a bug report found duplicate of some other bug report sent

previously if they both belong to the same topic.

As a future Scope of this work, a more accurate bug

report triaging system can only be prepared with domain-

specific knowledge of the software. Such a system cannot

achieve a substantial recall rate and precision if it is modeled

generically. As a future perspective of the work, more accurate

bug report duplicacy checking will be made by inculcating the

domain-specific words so that the software code segments that

result in crashes or failures might be figured out to precisely

analyze the duplicacy of the bug reports. One example of this

might be: "ArrayIndexOutofBounds". This combination of

words is a system-generated message which is specific to the

memory overrun error of the java programming environment.

Another improvement that will be made is to consider the

words which are written in abbreviated form or shorthand

notation while writing a bug report. These comprise of words

such as like→lik, this→dis, be→b, etc, which are used very

often in chat or while writing emails. A considerable extent of

bug reports is filled with such words. Mapping such words

systematically with their actual forms and reasonably

improves the triaging process.

References

[1] Zimmermann, T.; Premraj, R.; Sillito, J.; Breu, S.,

"Improving bug tracking systems," Software Engineering -

Companion Volume, 2009. ICSE-Companion 2009. 31st

International Conference on, vol., no., pp.247,250, 16-24

May 2009. DOI: 10.1109/ICSE-

COMPANION.2009.5070993

[2]Hindle, A., Alipour, A. & Stroulia, E. A contextual

approach towards more accurate duplicate bug report

detection and ranking. Empir Software Eng 21, 368–410

(2016). https://doi.org/10.1007/s10664-015-9387-3

[3] Nistor, A.; Tian Jiang; Lin Tan, "Discovering, reporting,

and fixing performance bugs," Mining Software

Repositories (MSR), 2013 10th IEEE Working

Conference, vol., no., pp.237,246, 18-19 May 2013.DOI:

10.1109/MSR.2013.6624035

[4] Luo, L.; Hao, D.M.; Tian, Z.; Dang, Y.B.; Hou, B.;

Malkin, P.; Yang, S.X., "Ariadne: An Eclipse-based

system for tracking originality of source code," IBM

Systems Journal, vol.46, no.2, pp.289,303, 2007 DOI:

10.1147/sj.462.0289

[5] Crowston, K., Annabi, H., & Howison, J. Defining Open

Source Software project success. In Proceedings of the

International Conference on Information Systems (ICIS

2003), Seattle, WA, USA, December. DOI:

10.1287/mnsc.1060.0550

[6] Vijayakumar, K.; Bhuvaneswari, V., "How Much Effort

Needed to Fix the Bug? A Data Mining Approach for

Effort Estimation and Analysing of Bug Report Attributes

in Firefox," Intelligent Computing Applications (ICICA),

2014 International Conference on, vol., no., pp.335,339, 6-

7 March 2014 DOI: 10.1109/ICICA.2014.75

[7] Anahita Alipour, Abram Hindle, and Eleni Stroulia. 2013.

A contextual approach towards more accurate duplicate

bug report detection. In Proceedings of the 10th Working

Conference on Mining Software Repositories (MSR '13).

IEEE Press, Piscataway, NJ, USA, 183-192.

https://doi.org/10.1007/s10664-015-9387-3

