
 
 

529 

Copyright © Authors 

 

 

IT in Industry, Vol. 9, No.3, 2021 

ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731 

Published Online 4-05-2021 

Extended Feature Set Construction for Efficient Triaging of Bug 

Reports of Open-Source Software
 

Kulbhushan Bansal1, Dr. Harish Rohil2 

1 Research Scholar, Deptt. of Computer Science & Engg., Ch. Devi Lal University, Sirsa, Haryana, India 
2 Associate Professor, Deptt. of Computer Science & Engg., Ch. Devi Lal University, Sirsa, Haryana, India 

Email: 1kul_bansal@yahoo.co.in, 2harishrohil@gmail.com 

 

Abstract: Bug report Triaging is an active area of research 

in the last few years. This is due to the rapid proliferation 

of the software and apps which are critically required in 

the market within a short period, and therefore, released 

without thorough testing. This is essential as the “time-to-

market” has a profound effect on profit margins, whereas 

software testing is a time-consuming process. However, 

without thorough testing, software occasionally fails 

during its working. At this time, the user is prompted to 

write a bug report, and, in another case, a report is 

automatically generated and sent to a central database. 

This report has the details of what happened that cause the 

software to malfunction. This form of testing, which is 

done by software users is popularly known as Beta Testing, 

in contrast to alpha testing, which is done by software 

testing companies/ departments. A triager is a person or 

program who reads the bug reports and classifies them 

related to the bug identified. This classification is a central 

issue of beta testing and studied in detail by many 

researchers. Automatic classification involves machine 

learning over natural language processing. Also, as prior 

training is required to be delivered to the machine, a 

training data set is required to be constructed to calibrate 

the machine. The mathematical models of machine 

learning classifiers work on feature sets, extracted from 

raw data. In this research, techniques are presented for the 

extraction of textual and Contextual features of the reports 

which lead to the construction of a feature set with 40 

features. Support Vector Machine (SVM) is implemented 

over R package as the machine learning classier and the 

results are compared with those of the benchmark 

techniques. 

 

Keywords: Triaging, Open-Source Software, Bug, Feature 

Set 

 

1. Introduction 

Handling a vast number of bug reports sent by a large 

number of software users need an organized approach.[1] Each 

bug report is required to be analyzed for checking whether it 

corresponds to a newly discovered bug or it is a duplicate of 

an existing report.  

 

As most of the reports are duplicates of each other, 

possibly related to the same issue/bug, such reports are 

attached, with one most detailed report as the master report, so 

that the software developer, at the time of fixing the bug, gets 

a much clear understanding of what happened at the time of 

software malfunction. In this paper, the state of art models for 

extraction of textual and contextual features is explained in 

detail. These are vector space models which are further 

extended with extended matching. The BM24 (Binary 

Measure 25) model [2] used by Sun Microsystems is also 

investigated with proposed extension techniques. 

 

2. Vector Space Models for Textual Similarity Scores 

Tf-idf is an abbreviation commonly used for the term 

frequency-inverse document frequency. It is one of the most 

common methods to evaluate how important a word is, in a 

document in information retrieval or text mining, Tf-idf is a 

very unique method to change the textual illustration of 

information into a Vector Space Model, or converting it into 

sparse textual features. Tf-idf weight is a term mostly used in 

information retrieval and text mining. The term weight is an 

arithmetical measure used to compute the importance of a 

word in a document in a collection. The importance relates 

substantially to the frequency of a word that appears in the 

document and it is lowered by the number of times a word 

occurs in the corpus. Search engines often use a variation of 

the Tf-idf weighting scheme as an essential tool in scoring and 

ranking a document's relevance according to the user’s query. 

The VSM represents the features extracted from the 

document. The first step for converting a document into a 

vector space is to prepare a dictionary of terms present in the 

document. To do this, one can simply choose all terms from 

the document and change them to the dimension in the vector 

space. VSM, interpreted in a mathematical sense, is a space in 

which the text corresponds to a vector of numbers in place of 

its original string textual representation. [3] 

It is to be noted that terms like 'is' and 'the' are 

ignored, as a consequence of stop word removal. The term 

frequency is used to represent each term in the vector space, 

term frequency is a measure of the number of times the term is 

there in vocabulary E(t). Term-frequency can be defined as a 

counting function: 

𝑡𝑓(𝑡, 𝑑) = ∑

 

𝑥𝜖𝑑

𝑓𝑟(𝑥, 𝑡) 
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where 𝑓𝑟(𝑥, 𝑡) is a simple function defined as: 

𝑓𝑟(𝑥, 𝑡) =  {1 , 𝑖𝑓 𝑥 = 𝑡  0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The 𝑡𝑓(𝑡, 𝑑) simply returns how many times is the 

term 𝑡 present in document d. This can go on into the 

formation of the document vector, which is represented by: 

𝑣𝑑𝑛⃗⃗ ⃗⃗ ⃗⃗  = (𝑡𝑓(𝑡1, 𝑑𝑛), 𝑡𝑓(𝑡2, 𝑑𝑛), 𝑡𝑓(𝑡3, 𝑑𝑛)………  𝑡𝑓(𝑡𝑛, 𝑑𝑛) ) 

 

Since it has a collection of documents at this time 

represented by vectors, these can be represented by a matrix 

with |D| X F shape, in which |D| is the cardinality (number of 

elements) of the document space, and F is the number of 

features, in the view represented by the vocabulary size.  

These matrices representing the term frequencies are 

likely to be very less in number with a majority of terms 

zeroed, and that is the reason why a common representation of 

these matrices uses sparse matrices. The major problem with 

the term-frequency approach is that it scales down rare terms 

and scales up frequent terms which are extra instructive than 

the high-frequency terms.  

The tf-idf weight can be used to solve this difficulty. 

The tf-idf measure gives a score of the importance of a word 

to a document in the corpus, and this is the reason why tf-idf 

incorporates local and global parameters. This is because it 

takes into consideration not just the remote terms but also the 

terms within the document collection. Tf-idf , effectively, 

scale down the common terms and at the same time, scale up 

the rare terms. For example, a term that occurs more than 20 

times not necessarily be 20 times more significant.  

The inverse document frequency is defined as: 

𝑖𝑑𝑓(𝑡) =  𝑙𝑜𝑔
|𝐷|

1 + |{𝑑: 𝑡 𝜖 𝑑}|
 

In which |{𝑑: 𝑡 𝜖 𝑑}| is the no. of documents in which 

term appears, when the term-frequency function satisfy tf(t,d) 

≠ 0, then 1 is supplemented in the formula to circumvent zero-

division. 

Tf-idf formula is : 

𝑡𝑓 − 𝑖𝑑𝑓(𝑡) =  𝑡𝑓(𝑡, 𝑑) 𝑋 𝑖𝑑𝑓(𝑡) 

This formula is generally known as the weight of the 

term. When there is a high term-frequency (tf) present in the 

document which is the local parameter and a low document 

frequency of a term in the whole corpus that is a global 

parameter, a heavyweight of Tf-idf calculation is obtained. 

 

Thus, the matrix for the document vector can be constructed as shown: 

𝑀𝑡𝑟𝑎𝑖𝑛 = [𝒕𝒇(𝒕𝟏, 𝒅𝟏)𝒕𝒇(𝒕𝟏, 𝒅𝟐) 𝒕𝒇(𝒕𝟐, 𝒅𝟏)𝒕𝒇(𝒕𝟐, 𝒅𝟐) 𝒕𝒇(𝒕𝟑, 𝒅𝟏)𝒕𝒇(𝒕𝟐, 𝒅𝟑) 𝒕𝒇(𝒕𝟒, 𝒅𝟏)𝒕𝒇(𝒕𝟐, 𝒅𝟒) ]𝑿[𝒊𝒅𝒇(𝒕𝟏) 𝟎 𝟎 𝟎   𝟎 𝒊𝒅𝒇(𝒕𝟐) 𝟎 𝟎   𝟎 𝟎 𝒊𝒅𝒇(𝒕𝟑) 𝟎   𝟎 𝟎 𝟎 𝒊𝒅𝒇(𝒕𝟒) ] 

 

The Cosine Similarity 

The cosine similarity between the two vectors or two 

documents in the Vector Space is an evaluation that computes 

the cosine angle between them. The particular metric is a 

dimension of the orientation and not magnitude, and it can also 

be seen as an assessment between documents on a normalized 

space because it does not only take into account the scale of 

each word count of every document but also the angle between 

the documents. The cosine of the angle between two document 

vectors can be obtained using the cosine similarity equation of 

the dot product between two vectors: 

𝑐𝑜𝑠𝜃 =  
𝑎 . 𝑏⃗  

|𝑎 |. |𝑏⃗ |
 

Cosine Similarity creates metric shows the relation 

between the two documents by looking at the angle in place of 

magnitude, considering the following examples shown below: 

 

 
Fig 2.1 Similarity Score: More for Vectors in the same 

direction 

It is important to note that even if there is a vector 

that is pointing to a point distant from another vector, both can 

still have a small angle and it is one of the major points on the 

usage of Cosine Similarity. The dimensions tend to pay no role 

for similarity score, as given by higher term count on 

documents. Consider having a document with the word “sky” 

which is appearing 600 times and some other document having 

the word “sky” appearing 100, then the Euclidean distance 

between them will be superior but the angle will still be small 

since they are pointing to the same direction, and thus have a 

large similarity score. 

 

3. Classifications of Duplicate and Non-Duplicate Bug 

Reports 

In a duplicate bug report detection system, the 

incoming bug report is subjected to a detection system which 

then responds with a list of potential duplicate bug reports 

related to the input report. The list should be sorted in 

descending order of relevance to the queried bug report. 

In our proposed approach, the generic textual 

similarity approach is augmented with increased feature set 

usage and the Latent Dirichlet Allocation approach.  

The LDA approach is a topic modeling approach 

which maps the bug reports to the most relevant topic which 

may refer to the Non-Functional Attribute (NFA) of the 

software (like Efficiency, robustness) or might be related to 

the component of the software (like preferences, history, etc.) 

Applying information-retrieval (IR) tools, the proposed model 

takes the advantage of the knowledge of the software process 

and product. [4,5] 
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The contextual word lists, consisting of NFA and 

Component names, are compared to the bug reports and the 

comparison results are analyzed as new features for the bug 

reports, in addition to the primitive textual and features of the 

bug reports, such as description, priority, type, component, etc. 

proposed in Sun et al. work [2]. Then, this extended set of 

bug-report features is used to compare bug reports and detect 

duplicates. Simulations are done using R simulation and the 

results demonstrate that the use of contextual features 

improves bug report de-duplication performance. The 

proposed approach is evaluated on a large bug-report data-set 

from the Mozilla project About 115000 bug reports are 

analyzed in simulation. In this research, the contextual word 

lists are considered as components of the Mozilla Browsers 

(For e.g. Preferences, history, etc.).  Our method results in a 

16.07% relative improvement in accuracy. This work makes 

the following contributions. 

1. It proposes the use of Topic Modeling to improve bug de-

duplication performance. 

2. The proposed method along with the textual feature model 

improves the accuracy of duplicate bug-report detection. 

3. The effect of considering different contextual features on 

the accuracy of bug-report de-duplication is systematically 

investigated. 

 

3.1 Proposed Model 

3.1.1 Bug Report Format and Corpus for textual features 

The bug report analysis structure considered in this 

paper is specified below: 

 
Fig 3.1 Corpus formation for Textual Features 

 

The following formula is used for computing the 

textual similarity score of any two bug reports. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐵1,  𝐵2) =  ∑

 

𝑤𝜖𝐵1∩ 𝐵2

𝑖𝑑𝑓(𝑤) 

where 

𝑖𝑑𝑓(𝑤) = 𝑙𝑜𝑔2  
𝐷𝑎𝑙𝑙

𝐷𝑡𝑒𝑟𝑚

 

 

The idf values are computed based on the corpus 

formed by the document collection. As specified above, there 

are 4 different types of corpus considered based on the format 

of the bug report considered in this dissertation. 

 

3.1.2 Contextual Features 

The domain-specific contextual features are 

computed using Latent Dirchlet Allocation as described. 

Figure 3.2 shows the framework of the proposed technique. 

 

Fig. 3.2 Proposed Framework of LDA Topic Modeling 

 

3.2 Similarity Score based on Textual Features 

Considering a generic format of bug reports 

consisting of LDA Topics which are basically the non-

functional requirements of the software, title, and description, 

the f-60 model can be described as shown: 

 
Figure 3.3 Pairs of Textual similarity combinations 

 

The Feature (similarity measurement) between two 

reports can be extracted in the following way: 

1. Topic to Topic 

2. Title to Title 

3. Description to Description 

4. Title (R1) to Description (R2) 

5. Description (R1) to Title (R2) 

6. Title and Description took together (R1) - to- Title 

and Description taken together (R2). 

7. Title and Description took together (R1) to Title (R2). 

8. Title and Description took together (R1) to 

Description (R2). 

9. Title and Description took together (R2) to Title (R1). 

10. Title and Description took together (R2) to 

Description (R1). 
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Considering each of the combinations as a separate 

feature, the total number of different features would be 10.  

Furthermore, one can compute four types of idf, as the bug 

repository can form three distinct corpora. One corpus is the 

collection of all the LDA Terms, another is the collection of 

all Titles, the other is the collection of all the Descriptions and 

the last one is the collection of all these three corpora taken 

together. 

The four types of idf computed within the four 

different corpora are defined by idfNFR, idftitle, idfdesc, and 

idfcombined respectively. The output of function f defined in 

equation (3.1) depends on the choice of bag of words for R1, 

the choice of a bag of words for R2, and the choice of idf. 

Considering each of the combinations as a separate feature, the 

total number of different features would be 10×4, which is 

equal to 40. Aside from considering words, bigrams can also 

be considered. A bigram refers to two consecutive words. 

With bigrams, considering different combinations of bag of 

words coming from idf computed based on summaries, 

descriptions, or both, there are another 40 features which 

would then bring the number of features extracted to 80. 

 

3.3 Bug Repository of Mozilla Firefox (Bugzilla Issue 

Tracker) 

Few of the records corresponding to the issues 

reported to the tracking system of Mozilla Firefox are 

tabulated in table 4.1 shown below: 

 

TABLE 3.1: SAMPLE RECORDS OF BUG REPOSITORY WITH BUG CATEGORY 

Issue_

id 

Compo

nent 

Duplicat

ed_issue 
Title Description Status 

Resol

ution 

Versio

n 

Created 

time 

Resolved 

time 

10954 
Preferen

ces 

 

Dialup 

properties 

need to be 

exposed 

in prefs 

The dialup properties of the 

profile should be exposed in the 

prefs panels so; the user has an 

easy way to modify them.  The 

only other alternative would be 

to; make people go to the profile 

manager to edit them, but we 

don't have that in; place either.  

Let's try the prefs panel approach 

first. 

RESO

LVED 

WON

TFIX 

Trunk 7/30/1999 

15:55 

5/14/200

8 11:44 

14871 General 269442 

[Find] 

Find 

whole 

word only 

Please add Match Whole Word 

Only option to browsers Find on 

this page; dialog. 

RESO

LVED 

DUPL

ICAT

E 

Trunk 9/24/1999 

14:49 

10/5/201

1 16:35 

19118 
Preferen

ces 
 

Plug-In 

Manager 

(ui for 

choosing 

mime-

type-

plugin 

associatio

ns) 

I would really like a plug-in 

manager for my browser that 

allows me to choose; which mime 

types are controlled by which 

plug-ins.; In the browser 

preferences window there should 

be a plug-in manager with all; 

available mime types listed. 

Under each mime type, there 

should be a list of; installed plug-

ins that can handle that mime 

type.  Radio buttons can be used 

to; select the plug-in the user 

prefers for that mime type.; ; For 

example; ;  audio/midi;     O Live 

Audio;     O Live Update 

Crescendo version 4.02;     O 

QuickTime Plug-in 4.0.3;  

audio/aiff;     O Live Audio;     O 

QuickTime Plug-in 4.0.3 

RESO

LVED 

WON

TFIX 

Trunk 11/17/1999 

14:58 

1/29/201

3 11:48 
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83003 Bookma

rks & 

History  #NAME? 

would like to see a command-line 

option that allows the bookmark 

window to be; opened on startup; 

something like mozilla.exe –

bookmarks 

RESO

LVED 

WON

TFIX Trunk 

5/28/2001 

3:16 

7/11/200

9 20:43 

84106 

File 

Handlin

g  

[FIX]Not 

correctly 

retrieving 

post data 

when 

saving a 

page or 

frame 

generated 

from a 

form 

POST 

From Bugzilla Helper:; User-

Agent: Mozilla/5.0 (X11; U; 

Linux 2.4.5-1mdk i586; en-US; 

rv:0.9+); Gecko/20010604; Build 

ID:    2001060421; ; Mozilla does 

not save the respond to a posted 

form correctly.; Instead of saving 

the posted reply; it saves the 

form.; ; Reproducible: Always; 

Steps to Reproduce:; 1.go to the 

referenced form; 2.type in a URL 

in the big text box (say 

http://www.mozilla.org); 3.push 

dump links; 4. The form correctly 

displays the page source; 5. Now 

try saving the output; 6. You get 

the form itself and not the 

response; Actual Results:  You 

get the form output; ; Expected 

Results:  You should get the 

dumped page.  You do get that in 

Netscape 

RESO

LVED 

FIXE

D Trunk 

6/4/2001 

23:28 

3/28/200

9 9:39 

88541 

Bookma

rks & 

History  

Show URI 

in the 

status bar 

on mouse-

over of 

Back/For

ward 

menu 

items 

From Bugzilla Helper:; User-

Agent: Mozilla/5.0 (Windows; U; 

Windows NT 5.0; en-US; 

rv:0.9.1+); Gecko/20010627; 

BuildID:    2001062704; ; When 

right-clicking on the back button; 

a list appears of previously 

visited; pages. However; when 

mousing over that list; the url for 

the respective page; should 

appear in the status bar.; ; 

Reproducible: Always; Steps to 

Reproduce:; 1. Load a page; for 

example http://www.cnn.com; 2. 

Click one of the article links on 

the front page; 3. Once the article 

loads; right-click on the back 

button; 4. Move the mouse down 

to the entry for CNN.com 

Homepage; ; Actual Results:  The 

status bar doesn't change when 

mousing over the links in; the 

back-button history.; ; Expected 

Results:  The status bar should 

show the URL for the link; in 

this; case: http://www.cnn.com; ; 

I searched for dups; but I didn't 

come up with any. And; I wasn't 

entirely sure; of the correct 

component. 

VERI

FIED 

FIXE

D Trunk 

6/30/2001 

8:20 

4/18/201

3 19:46 
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91774 

Bookma

rks & 

History  

Localizati

on 

problems 

with 

Bookmark

s Sorted 

By menu 

& History 

Sorted By 

menu 

Localization problems with 

Bookmarks Sorted By menu & 

History Sorted By menu.; Sorted 

by menu gets strings from 

headers - wrong (can't localize it 

in proper; way). It should have its 

strings for example in mail 

client.; ; Strings are from:; 

http://lxr.mozilla.org/seamonkey/

source/xpfe/components/bookmar

ks/resources/locale/en-

US/bookmarks.dtd#68;  to #74; ; 

Instead of gettings labels from 

headers add labels like this:; 

sorted by.name.label; sorted 

by.url.label; etc. 

RESO

LVED 

FIXE

D Trunk 

7/21/2001 

15:47 

11/26/20

09 6:04 

92073 

Preferen

ces  

UI to 

allow 

external 

handlers 

for 

internal 

types 

For those who cannot update 

QuickTime to 5.0.2 to solve bug 

69719; and similar cases we need 

options (in Preferences dialog) to 

set; individual mime-types 

(images...) to be processed by 

Mozilla; internally even if they 

are associated with another 

application 

RESO

LVED 

WON

TFIX Trunk 

7/24/2001 

4:29 

5/14/200

8 11:46 

 

3.4 Creating Positive and Negative Examples 

To train the SVM-based classier, it is important to 

create a set of classified data so that the machine can be 

trained over the manually classified data. From the term-

document-matrix obtained from the Mozilla bug repository, 

the sample of which is shown above, we can match each 

record with the other documents of the corpus to obtain a set 

of master and duplicate bug reports as shown in the following 

figure. 

 

 
Figure 3.2 Preprocessing for creation of Positive and 

Negative Examples 

 

To train the SVM, it is needed to create a set of 

positive and negative examples which are manually classified 

on all the parameters considered in this paper; namely, the 

textual, and contextual features. A stated previously, the 

positive examples consist of all the bug reports identical to 

each other; called duplicates and the negative examples consist 

of all the bug reports corresponding to different bugs; called 

non-duplicates. 

 

4. Results and Analysis 

The RPlot showing the most common terms in the 

corpus, on a scale of size, following their relative frequencies, 

is shown in figure 4.1 

 
Figure 4.1. Word Cloud of most frequent terms in the 

corpus 

 

The clustering of Bug Reports of Mozilla Firefox, as 

per the cosine similarity index is tabulated using R. It is shown 

in figure 4.1. 
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Fig 4.1 Clustering of Bug Reports following the cosine 

similarity index 

 

 
Fig 4.2 Histogram of Euclidian Separation between Bug 

Reports 

 

TABLE 4.2: PARAMETER SPECIFICATIONS OF SVM 

Support Vector Machine object of class "ksvm"  

SV type: C-svc  (classification)  

 parameter : cost C = 100  

Linear (vanilla) kernel function.  

Number of Support Vectors : 344  

Objective Function Value : -34210.61  

Training error : 0.018  

 

The textual feature set can be obtained from tf-idf 

measure which provides a total of 80 textual features.  The 

contribution of this work is to augment the extended feature 

set of textual and categorical feature sets with contextual 

features obtained from topic modeling using Latent Dirichlet 

Allocation. The feature set for classification of duplicates and 

non-duplicates, in terms of contextual measures, in the bug 

repository can be done by the creation of positive and negative 

examples. The positive and negative examples are created 

from the Bugzilla repository which consists of a total of 

115814 records.  

Support Vector Machine is trained by creating a 

training set from a pre-analyzed data set known as the training 

data set. This training data set provides a means for supervised 

learning. After training, the SVM can be tested over incoming 

bug reports to obtain the precision and recall rate measures. 

This classification of duplicates in terms of 

contextual topics can be used to augment the feature set used 

for the checking of duplicity in the bug repository. This gives 

a significant improvement in the classification of the bug 

reports related to a particular version of the software. 

 

4.2 Performance Measures 

The Precision Rate of the Trained SVM of the entire 

set of bug reports is depicted in figure 4.10. The Recall rate of 

the system is defined as a percentage of the relevant results in 

the repository retrieved as search results in response to a 

query. Recall rate is used as a measure of the effectiveness of 

the duplicity checking method. The proposed scheme goes 

well beyond the recall rates as achieved by Anahita alipour 

et.al as it matches the incoming bug reports to domain-specific 

topics which are the categories of bug reports. The recall curve 

of the proposed scheme for topic modeling is depicted in 

figure 4.5 below. 

It turns out that the proposed scheme with 80 textual 

features and LDA topic modeling results in about 15 percent 

improvement in the number of similar bug reports detected 

from the repository, as compared to only the domain-specific 

topic modeling proposed by Anahita Alipour et.al.[7] 

 

 
Fig 4.5 The Precision Rate of the Trained SVM. Horizontal 

axes show the normalized False Positive Rate and the 

vertical axes show the normalized True Positive Rate. 

 

 
Fig. 4.6 Precision versus Recall measure of SVM 
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5. Conclusions 

A system is proposed that automatically classifies 

duplicate bug reports as they arrive thereby saving the 

developer's time. The proposed system uses textual, 

categorical, and contextual features. The contribution of this 

paper is to extend the feature set used for the classification of 

duplicated bug reports. This is done by augmenting the feature 

set with the contextual features which relate the bug reports to 

the domain-specific topics. This topic modeling is done by 

identifying the topics and training a classifier for mapping bug 

reports to the appropriate topic. Topic modeling using latent 

Dirichlet allocation is used so to map a document to certain 

topics through Dirichlet Distribution. Results are empirically 

evaluated using the R statistical package. A dataset of 10,000 

bug reports is analyzed from the Bugzilla project. 

The proposed system can reduce development costs 

by filtering out duplicate bug reports. It also gives much more 

precision in the case of comparatively small software packages 

having a relatively small number of topics to which a bug 

report is to be matched. Moreover, there is a high probability 

of a bug report found duplicate of some other bug report sent 

previously if they both belong to the same topic. 

As a future Scope of this work, a more accurate bug 

report triaging system can only be prepared with domain-

specific knowledge of the software. Such a system cannot 

achieve a substantial recall rate and precision if it is modeled 

generically. As a future perspective of the work, more accurate 

bug report duplicacy checking will be made by inculcating the 

domain-specific words so that the software code segments that 

result in crashes or failures might be figured out to precisely 

analyze the duplicacy of the bug reports. One example of this 

might be: "ArrayIndexOutofBounds". This combination of 

words is a system-generated message which is specific to the 

memory overrun error of the java programming environment. 

Another improvement that will be made is to consider the 

words which are written in abbreviated form or shorthand 

notation while writing a bug report. These comprise of words 

such as like→lik, this→dis, be→b, etc, which are used very 

often in chat or while writing emails. A considerable extent of 

bug reports is filled with such words. Mapping such words 

systematically with their actual forms and reasonably 

improves the triaging process. 
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