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Abstract 

Breast cancer is one of the most common and lethal 

cancers in women. Since histopathological images 

provide adequate phenotypic information, they are 

essential in the diagnosis and treatment of breast 

cancers. Artificial Neural Network (ANN) methods are 

commonly used in the segmentation and classification 

tasks of breast histopathological images to increase the 

precision and objectivity of Breast Histopathological 

Image Analysis (BHIA). Histopathological photographs 

(HIs) are the gold standard for testing such forms of 

tumours for cancer diagnosis. Even for professional 

pathologists, analysing such images takes time and 

resources, and it is difficult, resulting in inter-observer 

and intra-observer disagreements. In this analysis, we 

provide a detailed overview of BHIA techniques based 

on ANNs. First and foremost, we divide the BHIA 

structures into classical and deep neural networks for 

further study. The related studies based on BHIA 

systems are then discussed. Following that, we study the 

current models to find the best algorithms. Finally, 

freely available datasets with download links are given 

for the convenience of potential researchers. In this 

article, we present a summary of ML and DL 

techniques with a focus on breast cancer. 
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classification, deep learning. 

1. Introduction  

Computers can now solve problems in a wide 

range of fields thanks to advances in hardware and 

computational technologies. The medical profession uses 

technology admirably to improve the health and quality of 

life of people. One appropriate example is medical 

computer-aided diagnosis. Among the diagnoses, image-

based diagnoses such as magnetic resonance imaging 

(MRI), X-rays, computed tomography (CT), and ultrasound 

have piqued the interest of scientists and academics. 

Similarly, histopathological images (HIs) are another form 

of medical imaging obtained by microscopy of tissues from 

biopsies, which gives specialists the opportunity to analyse 

tissue characteristics on a cell-by-cell basis. 

Cancer is a disease with high mortality rates in 

both developed and developing countries. In addition to 

causing mortality, the associated medical costs are high and 

have an effect on both public and private healthcare 

systems, penalising both the government and the 

community. According to Torre et al, the mortality rate in 

high-income countries is stabilising or even declining as a 

result of risk factor prevention interventions (e.g., smoking, 

over-weighting, physical inactivity) and treatment 

improvements. Mortality rates are increasing in low and 

middle-income countries due to a rise in risk factors. Early 

identification of tumours is one of the key points of success 

in treatment. In reality, breast cancer is the most common 

form of cancer among women in 140 of 184 countries. 

Mammography, ultrasound, and CT scans can detect the 

presence of masses developing in breast tissue, but only a 

biopsy can confirm the type of tumour. Biopsies, on the 

other hand, take longer to produce a result due to the 

acquisition technique (e.g., fine-needle aspiration or open 

surgical biopsy), tissue processing (creation of slide with 

staining process), and finally pathologist visual 

examination. Naturally, pathologist research is a highly 

technical and time-consuming task that is vulnerable to 

inter and intra-observer discordance. 

Furthermore, the staining process may increase variation in 

the analysis process. While hematoxylin and eosin (H&E) 

are the most popular and accessible types of stain, they can 

produce varying color intensities depending on the brand, 

storage period, and temperature. As a result, computer-

aided diagnosis (CAD) will boost pathologists' throughput 

and results trust by adding reproducibility to the diagnosis 

process and reducing observer subjectivity. 

The examination of nuclei is a critical component of cancer 

diagnosis. Tumors such as ductal carcinoma and lobular 

carcinoma have an abnormal growth pattern on epithelial 

cells. A large number of nuclei or mitotic cells in a small 

area may indicate irregular tissue development, which may 

be a tumour. An HI will detect this function, but in addition 

to the nuclei, it will detect other healthy tissues visible in 

images of benign tumours. Stroma is a type of tissue that 

appears in both malignant and benign photographs. 

Selecting more appropriate patches can improve 

classification processes. 

In recent years, we have seen an increase in the use of 

machine learning (ML) methods in CAD and HI research. 

ML procedures have been used to diagnose cancer in 

various tissues or organs such as the breast, uterus, skin, 

brain, bones, liver, and so on. ML methods can also be 

useful in HI analysis. ML methods have been widely used 

in the segmentation, feature extraction, and classification of 

HIs. HIs have rich geometric structures and complex 

textures that differ from the visual characteristics of macro 

vision images used in other machine learning tasks such as 

object recognition, face recognition, scene reconstruction, 

and event detection. 
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This review aims to capture the most important 

works from the last decade that use ML methods for HI 

research. We present a detailed overview of ML methods 

for HI analysis, including segmentation, feature extraction, 

and classification. The motivation is to comprehend the 

evolution and application of ML methods in HI analysis, as 

well as to discover ML methods' future potential in HI 

analysis. Furthermore, the following three research 

questions will be addressed in this review: 

1. Which ML methods were used for HI 

classification, and how were HIs presented to the 

ML methods (raw images, preprocessed images, or 

extracted features)? This query seeks to identify 

which monolithic classifiers, ensembles of 

classifiers, or DL methods have been frequently 

used to classify HIs. 

2. What are the most important HIs elements, and 

how are they obtained? This query seeks to 

determine which types of tissues or structures can 

be defined using ML methods. 

3. What are the dominant patterns in HI analysis? 

This query seeks to classify the most promising 

ML methods for HI analysis in the near future. 

The main contributions of this paper are: I it 

covers a period of exponential change in computer vision, 

from handcrafted features to representation learning 

methods; (ii) it is a comprehensive review that does not 

focus on HIs of specific tissues or organs; and (iii) it 

categorizes the works according to the task: segmentation, 

feature extraction, classification, and representation 

learning. Section 7 contains a number of survey and review 

papers on HI research. Unlike previous studies and surveys 

on HIs that only concentrate on HIs of particular tissues or 

organs or on a single learning modality (supervised, 

unsupervised, or DL techniques), this review covers a 

variety of methods, methodologies, databases, and 

experimental findings, allowing readers to recognize 

potential areas for future study in HI analysis. 

 

2. Related Works 

2.1 Segmentation 

Pathologists typically search for tissue regions that 

are important to disease diagnosis. HI segmentation usually 

aims to mark regions of pixels based on the structure they 

represent. For example, the identification of nuclei 

structures may be used to extract morphological features 

such as the number of nuclei per area, their size, and 

format, which may aid in the diagnosis of a tumour. The 

key problems in HI segmentation revolve around the 

separation of low-level and high-level structures. The 

former focuses on nuclei segmentation and was the subject 

of early works, which generally aimed to define mitosis and 

pleomorphism. Early research concentrated on low-level 

structures due to hardware limitations in loading and 

processing high-resolution HIs. Recent science, on the 

other hand, has concentrated on high-level segmentation, 

with the aim of identifying tissue types on high-resolution 

HIs. Furthermore, in recent years, there has been an 

increase in the number of large datasets based on high-level 

systems, such as the ICIAR BACH Challenge dataset. 

Finally, we can illustrate the segmentation using the stain 

color, which is typically accomplished by color space 

manipulation, image processing techniques, and low-cost 

machine learning algorithms. This section provides many 

techniques for segmenting HIs, the majority of which are 

focused on either supervised or unsupervised ML methods. 

The former includes HI datasets with area annotation, while 

the latter does not. 

 

2.1.1 Unsupervised Approaches   

The k-means algorithm is an unsupervised ML approach 

for clustering that has been used for pixel area 

segmentation. Fatakdawala et al [1] proposed a method for 

detecting lymphocyte nuclei based on the expectation-

maximization of the geodesic active contour that can 

distinguish four structures: lymphocyte nuclei, stroma, 

cancer nuclei, and history. The method begins with 

segmentation using a k-means algorithm, which clusters 

pixels with identical intensities, and is then enhanced using 

an expectation-maximization algorithm. The magnetic 

interaction principle is used to determine the contours. 

Following the concept of contours, an algorithm looks for 

concavity, which indicates that nuclei are overlapping. The 

studies were carried out using a breast cancer dataset. 

Roullier et al. [2] investigate multiscale segmentation with 

k-means. The pathologist's concept is used in this work to 

examine an entire slide picture (WSI). The segmentation 

begins at a lower magnification factor and progresses to a 

higher magnification factor, where it is easier to distinguish 

mitotic cells. The clustering algorithm's output aims to 

classify regions of interest in each magnification. 

Rahmadwati et al. [3] used the k-means algorithm to help 

classify HIs. Although the emphasis is on Gabor filters 

rather than k-means, this clustering approach is critical in 

the segmentation process. Peng et al. [4] used k-means and 

principal component analysis (PCA) to divide HIs into four 

types of structures: glandular lumen, stroma, epithelial-cell 

cytoplasm, and cell nuclei. Following that, morphological 

operations of closing and filling are carried out. He et al. 

[5] used a combination of local region-scalable fitting and 

k-means to segment cervix HIs. Fatima et al. [6] used k-

means for segmentation, followed by skeletonization and 

shock graphs to classify nuclei in the previously segmented 

picture. If the shock graph gives a trust value less than 0.5 

for nucleus detection, a multilayer perceptron is used in the 

second attempt (MLP). This hybrid method achieves 92.5 

percent precision in nucleus detection. 

Mazo et al. [7] have used k-means to classify cardiac 

images into three categories: connective tissues, light areas, 

and epithelial tissue. A flooding algorithm processes light 

areas in order to blend the results with epithelial regions 

and boost the final result. Finally, the plurality rule was 

used to categories cells as flat, cubic, or cylindrical. This 

approach had a sensitivity of 85%. Mazo et al. [8] 

expanded this work. Tosun et al. [9] suggested k-means 

segmentation, which divides all pixels into three categories 

(purple, pink, and white), which are further subdivided into 

three subcategories. Object-level segmentation based on 

clustering achieved 94.89 percent accuracy compared to 

86.78 percent for pixel-level segmentation. Nativ et al. [10] 

proposed a k-means clustering based on morphological 

features of lipid droplets previously segmented using active 

contours models. 

A decision tree (DT) was used to validate the rules that lead 

to the classes obtained by clustering. The association with 

pathologist assessments was 97 percent. Shi et al. [11] use a 

two-step k-means algorithm to segment follicular 

lymphoma HI. The first phase divides nuclei and other 
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forms of tissues into two clusters. The previous step's 

"another type tissue" region is then divided into three 

groups in the following step (nuclei, cytoplasm, and 

extracellular spaces). The final move is a watershed 

algorithm to obtain better nuclei contours. The discrepancy 

between manual and automatic segmentation was 

approximately 1%. Brieu et al. [12] proposed a k-means-

based segmentation approach. The effect of k-means 

segmentation is improved and simplified by applying a 

series of thresholds that seek to maintain the shape of 

artefacts. The most important aspect of such a system is 

nucleus identification rather than segmentation. Shi et al. 

[13] used k-means to cluster pixels in the CIELAB color 

space using pixel neighborhood statistics. 

A thresholding phase enhances contour 

identification of fat droplets, and human specialists 

examine morphological details relevant to the droplets to 

make a diagnosis. Shi et al. [11] suggested a segmentation 

approach that takes into account the local correlation of 

each pixel. A k-means algorithm-based first clustering 

produces a poorly segmented cytoplasm, and a second 

clustering is performed that does not take into account the 

nuclei found by the first clustering. Finally, a watershed 

transform is used to complete the segmentation. 

2.1.2 Supervised Approaches  

In this section, we present works on HI 

segmentation that are focused on supervised ML 

approaches. The majority of the works discussed in this 

section are focused on classification algorithms and thus 

involve labelled datasets with annotated pixels or pixel 

regions. Table 5 summarizes recent publications on 

supervised ML methods used for segmentation, with eight 

out of fourteen works focused on SVM classifiers. Yu and 

Ip [14] proposed a method for encoding HIs that uses a 

patching technique and a method called spatial hidden 

Markov model (SHMM). Each patch is defined by a 

function vector that combines Gabor energy and gray-level 

features. When compared to a secret Markov model, the 

SHMM showed changes ranging from 4% to 17% in 

multiple tissues. Arteta et al. [15] use the idea of external 

regions on grayscale images to distinguish nuclei on HIs. 

They used an SVM classifier to classify the threshold of 

external  

regions arranged in an overlap tree. In terms of the number 

of cells detected after segmentation, this method obtained 

88.5 percent of the F1-score, compared to 69.8 percent for 

the state-of-the-art. Janssens et al. [16] proposed a 

segmentation protocol for identifying muscular cells.  

First, a segmentation focused on thresholding 

distinguishes connective tissues and cells. The segmented 

regions are then fed into an SVM, which categorizes them 

recursively into three groups (connective tissue, clump of 

cells, and cells) until only connective and cell tissues 

remain. This approach received an F-score of 62 percent, 

which was cutting-edge at the time. Saraswat and Arya [17] 

proposed a segmentation protocol based on a non-

dominated sorted genetic algorithm (NSGA-II) and a 

threshold classifier. The NSGA-II produces the function 

value threshold from ground-truth pictures. The 

segmentation is created by comparing learned thresholds 

and feature values. The research by Qu et al. [18] focuses 

on breast cancer prognosis. They used an SVM to conduct 

pixel-wise classification to distinguish nuclei from stroma. 

A second step based on a watershed algorithm recognizes 

nuclei. Using pixel-level, object-level, and semantic-level 

features, the method achieved 72% accuracy. Salman et al. 

[19] proposed a k-NN-based segmentation approach for 

WSI analysis. The method generates histograms from 

patches of 6464 pixels extracted from the H&E channels 

obtained through color deconvolution. The highest 

accuracy was 73.2 percent when histograms of both H&E 

channels were used. Chen et al. [20] suggested a system for 

identifying stroma and tumour nests using pixel-wise SVM. 

A watershed algorithm is used to segment nuclei, producing 

314 object-level features and 16 semantic-level features. 

The study of function value was used to minimise the 

feature dimensionality. 

Geessink et al. [21] used a normal density-based 

quadratic discriminant classifier (QDA) to segment 

colorectal images. The segmentation employs the CIELAB 

color space with a threshold to exclude background pixels 

and the HSV color space to identify the remaining pixels. 

Following classification, errors are corrected based on 

histological constraints. According to the scientists, the 

algorithm created an error rate of 0.6 percent for tumour 

quantification, which is lower than pathologists' error (4.4 

percent). 

2.2 Feature Extraction  

 Image feature extraction is typically divided into 

three steps: preprocessing, feature extraction, and feature 

processing. The features are then segmented and classified 

using machine learning techniques. The aim of 

preprocessing is to remove interference factors and 

highlight characteristic information. The primary methods 

are as follows: image standardization [22] (adjust image 

size); image normalization [23]. (Adjust the image center of 

gravity to 0). The main goal of feature processing is to 

remove features with little details and reduce the amount of 

measurement. Principal components analysis is a common 

feature processing method [24]. Among them, feature 

extraction is a critical stage. The process of converting 

input data into a collection of features is known as feature 

extraction [25]. The main aim of feature extraction is to 

extract the most important information from the original 

data and display it in a lower-dimensional space [26]. As a 

result, in this section, we primarily summaries the features 

extracted in WSI for CAD. Until classification, supervised 

shallow methods rely on features extracted from raw data. 

Feature extraction methods process images and 

provide a fair number of features summarizing the image's 

content. Such methods seek to minimize the dimensionality 

of the image and highlight relevant details related to the 

problem, such as the presence or absence of specific 

structures, the number of individual components, texture, 

and structure shapes. Ideally, features should be 

independent of translation, size, and rotation. The key 

challenges in extracting features from HIs are the extraction 

of morphological characteristics from structures present in 

such images and the quest for higher-level representations 

that allow capturing information relevant for medical 

diagnosis. The morphological features are associated with 

recognizing cellular changes, such as deformed nuclei due 

to a problem or mitotic processes, or tissue changes, such 

as density or an odd number of cells. The morphological 

features are similar to the way pathologists interpret HIs, 

searching for clear justifications for categorizing the HI. 

High-level features, on the other hand, are abstractions of 

all structures in HIs, not just the cell structures. As a result, 
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texture descriptors or frequency domain representations are 

often used by researchers. Form, scale, texture, fractal, or 

even a combination of these features have been used for 

HIs. Table 6 summarizes the papers on function extraction. 

Object-level and morphometric characteristics such as form 

and scale are critical for disease grading and diagnosis. 

Ballar et al. [27] suggested segmenting HIs to distinguish 

dysfunctional or stable megakaryocytes, structures from 

which morphometric features are derived. Petushi et al. 

[28] used the Otsu algorithm to highlight nuclei and then 

extracted various features such as inside radial contact, 

inside line contact, field, perimeter, area-perimeter ratio, 

curvature, aspect ratio, and major axis alignment. 

Feature vectors are generated by concatenating the 

histograms of all these functions. Madabhushi et al. [29] 

proposed a method for predicting disease outcome using 

multiple modalities, including MRI, digital pathology, and 

protein expression. To represent the spatial arrangement of 

histopathology images, they used graph-based features such 

as Voronoi diagram (total area of all polygons, polygon 

area, polygon perimeter, polygon chord length), Delaunay 

triangulation (triangle side length, triangle area), minimum 

spanning tree (edge length), and nuclear statistics (density 

of nuclei, distance to the nearest nuclei in different pixel 

radii). Song et al. [30] used thresholding and the watershed 

transform to extract features such as cystic cytoplasm 

length, cystic mucin production, and cystic cell density. 

These three features are used to train various classifiers. 

The experimental results showed that these three features 

outperformed morphological features (shape and size), 

achieving 90 percent accuracy versus 64 percent. 

Furthermore, the combination of these features with 

morphological features achieved just 85 percent accuracy. 

Gorelick et al. [31] use a segmentation step to classify 

super pixels for prostate cancer detection and classification. 

Morphometric and geometric features are used to depict 

segmented images. 

 Filipczuk et al. [32] proposed a cytological 

analysis and breast cancer diagnosis system that included 

morphometric features. After isolating nuclei from photos, 

they measured area, perimeter, eccentricity, major and 

minor axis length, luminance mean and variance, and 

distance to the centroid for each nucleus. Ozolek et al. [33] 

classified follicular lesions on thyroid tissue. Following a 

preprocessing phase for nucleus segmentation, the 

chromatin texture of nuclei with linear optimal transport 

provides features for the final classification. Fukuma et al. 

[34] compared spatial-level and object-level descriptors 

such as Voronoi tessellation, Delaunay triangulation, 

minimum spanning tree, elliptical, convex hull, bounding 

box, and boundaries. In the best case, object-level features 

had an accuracy of 99.07 percent, while spatial features had 

an accuracy of 82.88 percent. Morphometric characteristics 

can also be present in other structures, such as glands, 

which are easier to distinguish due to the distinction 

between the lumen and other cellular structures. This is the 

focus of the work proposed by Loeffler et al. [35], who use 

inverse compactness and inverse solidity as indicators of 

gland alteration in prostate cancer. The features were 

derived from the area (object and convex hull area) and 

perimeter of threshold highlighted objects. Marugame et al. 

[36] used morphometric features derived from image 

artefacts indicating nuclear aggregations to represent three 

types of ductal carcinomas in breast HIs. The number of 

pixels, weight, and thickness of the objects represents their 

size and shape. Osborne et al. [37] used four geometrical 

features derived from nuclei after segmentation to diagnose 

melanoma in skin HIs. The four characteristics are the ratio 

of nuclei to cytoplasm, the perimeter of a nucleus to its 

area, the major axis length of a nucleus to its minor axis 

length, and the number of nuclei to the area of cytoplasm. 

Kwak and Hewitt [38] proposed a multi-view 

approach to detecting prostate cancer that derived 

morphological and intensity features from multiple 

resolutions. Area, compactness, smoothness, roundness, 

convex hull ratio, major-minor axis ratio, extent, bounding 

circle ratio, distortion, and shape background are derived 

from lumens and epithelial nuclei, as well as other 

relational features between them. Olgun et al. [39] 

proposed a feature extractor for HIs that is based on the 

local distributions of objects segmented by color intensity. 

The function extractor computes the distance between an 

object and its surroundings. The proposed method 

outperformed the other thirteen approaches that used 

textural and structural features. 

2.3 Feature Selection 

Lambrou et al [40] introduced a hybrid GA-based 

CPs, dubbed GA-CP, in 2011. The ability of rule-based GA 

to produce human-readable action was one of its primary 

advantages. The proposed model was tested using datasets 

collected from a fine needle aspirate of a breast mass, and 

the results showed that it outperformed the current model in 

terms of diagnosis accuracy and reliability. Beura et al [41] 

proposed two-dimensional DOST in 2015 in order to derive 

coefficients from optical mammograms. The most 

important DOST coefficients were chosen from a large 

collection of DOST coefficients using a novel feature 

selection algorithm based on the NHT and statistical “two-

sample t test.” The benign or malignant type of cancer was 

determined using ammographic image classification based 

on the selected features. The Ada Boost algorithm was used 

in conjunction with a random forest classifier to classify the 

mammographic images. The proposed model was validated 

using MIAS and DDSM datasets, and the results 

demonstrated an improvement in classification accuracy 

and AUC. Takemura et al [42] developed a novel algorithm 

to differentiate between ultrasonic breast tumour images 

using the Adaboost Algorithm, which was based on the log-

compressed distribution parameter. Furthermore, the 

pattern in the spectrum-based features was created to 

measure the abnormalities in the tumor's form. The 

proposed multiclass Ada Boost learning algorithm, in 

conjunction with the sequential feature-selection method, 

was compared to conventional models such as the 

Mahalanob is, distance-based classifier, and multiclass 

support vector machine. In terms of the approximate 

parameters for tumour discrimination, the findings showed 

that the proposed model outperformed the current models. 

Several machine learning methods for detecting 

breast cancer have been investigated in the literature. 

However, due to the absence of many features in the 

prediction process, the detection technique still needs 

development. The variance of diagnosis accuracy was 

reduced in WAUCE [43], however large datasets could be 

handled. Aside from these benefits, the detection technique 

has the disadvantage of requiring a long computation time 

due to the lack of parallel computation techniques. With 

SD-CNN, [44] there was no need for reprogramming for 
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each data feature, and each feature's processing time was 

kept to a minimum. However, there was a need to 

investigate the raw imaging characteristics derived from the 

first layers of extracted features. Furthermore, despite 

having no prior knowledge of the lesions, CNNIBCC4 was 

effective at automatically extracting cancer regions, with a 

high AUC of classification. CNNI-BCC, despite having a 

strong AUC, still had scalability issues. [45] Greater 

classification accuracy was achieved with GNRBA. The 

computational complexity, however, was lower. The failure 

of this approach was primarily due to its reliance on benign 

or malignant cases alone, as well as the lengthy processing 

time for the features. DMAS8 was very effective at 

detecting small tumours. In function classification, 

however, it had low sensitivity and specificity. The area 

where tumours are likely to form in the future was 

predicted using GA-CP [40]. Despite having a high degree 

of trust, it was unable to generate reliable results for large 

datasets due to errors. [41] In DOST, the accuracy of 

distinguishing tumour from non-tumor regions was good, 

as was the AUC. However, due to the method's ambiguity 

in estimating the likelihood of the null hypothesis, it cannot 

be used to its full potential. Furthermore, the Ada-Boost 

Algorithm [42] reduced both the cost and the number of 

human resources. This method had drawbacks such as a 

lack of successful feature set selection. 

[47] Formalized paraphrase This paper created an 

intelligent breast cancer diagnosis model that includes (a) 

preprocessing, (b) segmentation, (c) feature extraction, (d) 

feature collection, and (e) classification phases. The 

CLAHE and median filtering models were used to perform 

preprocessing on the given input image in this case. 

Following that, the Region Growing algorithm was used to 

complete the segmentation procedure. Geometric, texture, 

and gradient features from the segmented tumour were 

extracted during the feature extraction process. Since the 

length of the feature vector was discovered to be high, this 

proposal sought to pick the best features using a new hybrid 

algorithm called VU-LA, which was created by combining 

the LA and PSO algorithms. Finally, the NN classifier was 

used to classify the features that were optimally chosen. 

Furthermore, a new training algorithm was used, with the 

proposed VU-LA algorithm updating the weight of the NN 

to achieve maximum accuracy. According to the overall 

study, the VU-LA model is 5.8 percent more accurate than 

WOA, 29.4 percent more accurate than GWO, 30.7 percent 

more accurate than FF, 11.7 percent more accurate than 

PSO, and 8.2 percent more accurate than LA. As a result, 

the proposed breast cancer diagnostic model was 

discovered to effectively distinguish between benign and 

malignant images. 

2.4 Classification 

Image classification, as the name implies, is to 

have a fixed set of classification labels, and then for the 

input image, find a classification label from the 

classification label set, and eventually assign the 

classification label to the input image. It is at the core of 

computer vision and is the most basic concern that serves 

as the foundation for other computer vision tasks such as 

positioning, detection, and segmentation [47] [48]. It is 

commonly used in practice. Although it is a simple task for 

humans, it can be difficult for computer systems. Many 

seemingly disparate problems in computer vision (such as 

object recognition and segmentation) can be reduced to 

image classification. CAD is the most researched task of 

pathological image analysis. It also aids the pathologist in 

making a diagnosis. The diagnostic method entails 

assigning one or more WSIs to a disease group. Since the 

errors created by machine learning systems vary from those 

produced by human pathologists [49], the use of computer-

aided design systems will boost classification accuracy 

[50]. Histopathological image classification has 

increasingly become a research hotspot in the field of 

medical image processing in recent years, owing to 

advances in computer technology. To the human anatomy 

area and the pathological changes area to continue the 

accurate classification, may the full degree doctor accurate, 

the rapid diagnosis state. This is critical for physicians' 

future diagnoses and patient care. There are approximately 

54 publications from 2004 to 2020 on image classification 

using WSI techniques to assist pathologists in diagnosis in 

the papers we summarized. 

2.4.1 SVM-based Classification Method  

SVM is a type of supervised machine learning 

technique. It was first published in 1963 by Vladimir N. 

Vapnik and Alexander Y. Lerner [51]. It employs the 

hypothesis space of linear functions in hyperspace [52] and 

trains with the learning algorithm of optimization theory, 

which realizes the learning bias derived from statistical 

learning theory. The aim of SVM classification is to find an 

efficient computational method for learning good 

separation hyperplanes in hyperspace [53]. SVM is 

intended for binary classification. When an SVM is applied 

to a multi-class classification problem, it internally divides 

the challenge into several binary classification problems 

and solves them using several SVMs [54] [55]. In our 

analysis, SVMs are used for WSI classification in ten 

articles. 

2.4.2 Random Forest-based Classification Method 

RF is a common machine learning algorithm that 

is frequently used in classification tasks in a variety of 

fields [56] [57]. RF is a list of tree structure classifiers [58]. 

Each tree is dependent on the value of a randomly chosen 

vector that is distributed uniformly over all trees in the 

forest [59]. Each tree in the forest will vote once, assigning 

each feedback to the most probable category mark. This 

method is fast and noise-resistant, and it is an effective 

ensemble that can detect nonlinear patterns in data. It can 

easily manage numerical and categorical data [57]. One of 

the key benefits of RF is that it causes overfitting even as 

more trees are added to the forest [60]. There are five 

articles in the papers we summarized that use RF classifiers 

for similar WSI classification. 

In [61], WSI is classified for neuroblastoma 

biopsy. An automated classifier community extracts and 

processes the texture features derived from the tissue 

segmentation components. Multiple Classifiers: kNN, 

linear discriminant analysis (LDA) & kNN, LDA & nearest 

mean (NM), correlation LDA (CORRLDA) & kNN, 

CORRLDA & NM, LDA & Bayesian, and SVM with a 

linear kernel The performance of multiple classifiers is then 

chosen using a basic two-step classifier combination 

method comprised of voting and weighting processes. The 

automatic classifier community is trained in a multi-

resolution frame with different levels of differentiation. The 

qualified classification system is checked on 33 WSIs. 

Finally, the classification accuracy is 87:88 percent. 

Prostate cancer regions in WSIs are defined in [62]. WSIs 
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are first decomposed into a picture pyramid of several 

resolution levels. Areas classified as cancer by a Bayesian 

classifier at a lower resolution are then identified at a 

higher resolution. The AdaBoost integration method is used 

to pick 10 image features from over 900 first order 

statistical, second order co-occurrence, and Gaborfilter 

feature groups at each resolution level. The experimental 

results show that, as compared to other classifiers, the 

Bayesian classifier produces higher AUC and precision. 

2.5 Deep Learning based Classification Method 

Because of recent advances in solving complex 

machine learning problems on large datasets, deep learning 

approaches are gaining traction in the scientific community. 

In a single optimization step, a convolutional neural 

network (CNN) can learn both a representation and a 

decision boundary. However, in order to prevent overfitting 

issues, CNNs typically need a large amount of data for 

sufficient training. Nonetheless, most HI databases have 

just a few patients and hundreds of images, which limits the 

use of DL. Data augmentation [63, 64] and transfer learning 

[65] are two approaches to overcoming the shortage of data 

in HI datasets. ImageNet, which contains over 14 million 

images, is one of the most commonly used datasets for 

training CNNs for object recognition. 

Data augmentation creates new HIs from existing 

ones using affine transformations or morphological 

operations. Patching HIs is another popular method of data 

augmentation. Patching has the effect of choosing parts of 

an HI that have the same structure but belong to different 

groups. The transfer learning process, on the other hand, re-

trains CNNs that have previously been trained in broad 

datasets that are typically from a different domain than the 

target problem. The pre-trained CNNs can be used in two 

ways: to extract features from HIs and use these features 

with shallow classifiers, as defined in Sections 4 and 5; and 

to fine-tune such CNNs on an HI dataset, which means that 

filters learned on a large dataset will be adapted to the HI 

dataset. Despite the success of DL methods in image 

classification, the literature has shown that CNNs are not 

well suited to classifying textures and achieve only 

moderate accuracy. HIs exhibit a variety of structures, one 

of which is texture. Several recent works have attempted to 

address these difficulties in order to use DL methods in HI 

analysis. Table 9 summarizes the works discussed in this 

section in terms of network architecture, tissue or organ 

from which the HI was collected, and publication year. 

Malon et al. [78] is among the first to use DL methods in 

HI analysis. They used a classic LeNet-5, a 7-layer CNN 

architecture proposed by Lecun et al. [66] in 1998 to learn a 

representation from HIs previously segmented with an 

SVR. An SVM was used to classify the features extracted 

by the CNN in order to find mitotic nuclei. The comparison 

between machines and three pathologists is the most 

impressive part of this work. The pathologists had Cohen 

Kappa factors of 0.13 and 0.44 in the best case, 

emphasising the inter-observer problem. Kainz et al. [67] 

proposed two CNNs based on the LeNet-5 architecture for 

segmentation and classification of glands in benign and 

malignant colorectal cancer tissue.  

The first CNN distinguishes glands from the 

context, while the second CNN recognizes gland-separating 

structures. The tissue classification accuracy for the 

Warwick-QU colon adenocarcinoma and 

GlaS@MICCAI2015 challenge datasets was 98 percent and 

95 percent, respectively. Some works used CNNs based on 

the AlexNet architecture proposed by Krizhevsky et al. [68] 

in 2012. AlexNet is similar to LeNet-5, but it has 12 layers, 

more filters per layer, and stacked convolutional layers. 

Stanitsas et al. [69] used the AlexNet CNN to describe 

breast cancer HIs. They compared the CNN findings to 

some handcrafted feature extractors and shallow classifiers 

and concluded that the CNN did not outperform the shallow 

methods. Spanhol et al. [70] investigated architectures 

based on AlexNet CNN for the issue of breast cancer HI 

classification. The experimental findings on the BreaKHis 

dataset revealed that the CNN achieved mean accuracy 

rates at patient-level ranging from 81.7 percent to 88.6 

percent, depending on magnification, which is better than 

other shallow ML approaches with textural features. 

Sharma et al. [71] have used an AlexNet CNN and other 

custom CNN architectures to distinguish benign and 

malignant tumours. Because of the limited sample size, the 

authors had to use patching and affine transforms to 

supplement the results.11 WSIs produced 231,000 images 

for cancer classification. Four WSIs provided 47,130 

images for training in necrosis detection. The AlexNet and 

custom CNN architectures outperformed most handcrafted 

features and an RF classifier. 

Budak et al. [72] suggested an end-to-end model 

for detecting breast cancer in HIs based on a pre-trained 

AlexNet CNN and a bidirectional LSTM (BLSTM). 

Convolutional layers are used to encode HIs into a high-

level representation, which is flattened and fed into the 

BLSTM. The proposed model achieved the best average 

accuracy of 96.32 percent for the magnification factor of 

200 in experiments on the BreaKHis dataset. Furthermore, 

for magnification factors of 40, 100, and 400, the average 

accuracy was 95.69 percent, 93.61 percent, and 94.29 

percent, respectively. 

Some works employ CNNs based on the inception 

architecture suggested by Szegedy et al. [73]. The inception 

modules have parallel paths where the image is passed 

through filters of various dimensions (1, 33, and 55). 

Additionally, max pooling is used. The outputs are 

concatenated and sent to the next inception module. 

GoogleLeNet, also known as Inception-V1 [73], has 9 such 

inception modules stacked linearly. It has 27 layers and 

employs global average pooling at the end of the last 

inception module. Inception-V2 and Inception-V3 [75] 

used an improved inception module and auxiliary outputs, 

which increased accuracy while decreasing computational 

complexity. Architecture is the Inception-ResNet, which 

blends the inception model with the ResNet model [75]. Li 

et al. [76] compared AlexNet and Inception-V1, 

handcrafted features and SVM, and features extracted by 

CNNs to identify regions of colon histology images as 

gland or non-gland. The best results were obtained by 

combining handcrafted features with an SVM and the 

estimation of a CNN. They used data augmentation with 

rotations and mirroring for handcrafted features and CNNs. 

Yan et al. [77] combined a pre-trained Inception-V3 with a 

BLSTM to identify breast cancer HIs as normal, benign, in 

situ carcinoma, or invasive carcinoma. The method divides 

HIs into 12 small patches on average. Following that, a 

fine-tuned Inception-V3 CNN extracts features from the 

patches, where a 5,376-dimensional feature vector is 

formed by concatenating the weights of the CNN's last 

three layers. Such feature vectors are fed into a 4-layer 
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BLSTM, which fuses features from 12 small patches to 

produce an image-wise classification. Experiments show 

that such a method achieved an average accuracy of 91.3 

percent. de Matos et al. [65] proposed a classification 

method for breast cancer HIs that uses transfer learning to 

extract features from HIs using an Inception-V3 CNN pre-

trained with the ImageNet dataset. The proposed method 

increased classification accuracy by 3.7 percent using 

feature extraction transfer learning and an additional 0.7 

percent using irrelevant patch removal. 

 

3. CONCLUSION 

Image analysis approaches for CAD based on 

machine learning and WSI technologies are summarized in 

this paper. The datasets, assessment methods, feature 

extraction, segmentation, classification, and detection used 

in the task are evaluated and summarized. The two most 

widely used datasets in the general datasets summarized by 

us are TCGA [40] and Camelyon [41]. Color features, 

texture features, shape features, and deep learning features 

are the most widely used feature extraction techniques. In 

the segmentation work, it was divided into thresholding-

based segmentation, region-based segmentation, graph-

based segmentation, clustering-based segmentation, deep 

learning-related segmentation, and other methods. These 

conventional methods are easy to calculate but susceptible 

to noise, so they are not robust. In recent years, the U-net 

segmentation approach has become the de facto norm. 

Classification work is the most researched. In the 

classification work, the combination of ensemble learning 

for the conventional classifier, MIL, and neural network 

has better recognition ability. The majority of the research 

is done in tandem with the classification work. 

Furthermore, the deep learning system based on CNN has 

achieved excellent success in segmentation, classification, 

and identification tasks, which will aid in the early 

detection, diagnosis, and treatment of patients. 
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