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Abstract: We have seen significant advancements in 

Artificial Intelligence and Machine Learning in the 21st 

century. It has enabled a new technology where we can 

have a human-like conversation with the machines. The 

most significant use of this speech recognition and 

contextual understanding technology exists in the form of a 

Smart Speaker. We have a wide variety of Smart Speaker 

products available to us. This paper aims to decode its 

creation and explain the technology that makes these 

Speakers, "Smart." 

 
Index Terms: AI, CNN, Smart Speaker, RNN, IOT, 

Privacy, Finite State Machine, Raspberry Pi 

 
1. Introduction  
The progressions in semiconductor innovation have decreased 

measurements and cost while improving the exhibition and 

limit of chipsets. Moreover, advancement in the AI structures 

and libraries carries prospects to oblige more AI at the asset 

compelled edge of purchaser IoT devices. These progressions 

made it feasible for buyer electronic devices, for example, 

smart speakers to be made in little structure factors, yet 

equipped for running unique calculations to catch measures 

and comprehend voice orders. Such devices are incredibly 

affecting our everyday life. Sensors are these days an integral 

part of our environment which provides nonstop information 

streams to construct shrewd applications. A model could be a 

smart home scenario with numerous interconnected devices. In 

a smart home scenario, multiple smart devices ( for example, 

smart security cameras, video doorbells, smart attachments, 

smart carbon monoxide screens, smart entryway bolts, and 

alarms, and so on) are interlinked and work in a joint effort 

with one another to serve a shared objective. Smart speakers 

are among such intelligent devices that are by and large 

broadly received by regular clients and turning into a 

fundamental piece of smart homes. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1. Kasper Smart Speaker 

 
To decipher these technologies' internal working and gain a 

better insight into these devices, we have tried to create our 

smart speaker. We call it Kasper.AI.  
We are using a raspberry pi as our primary computing unit 

with a reSpeaker 2 mic array and a speaker module for audio 

i/o. All the computational and file processing work will be 

done on-board on the raspberry pi. All components used are 

targeted to be cross-platform and are not too generic for a 

board or hardware set. We have implemented the Smart 

Assistant client through a modified finite state machine 

architecture. The state machine will be started on hot word 

detection and all the states will be covered as the subsequent 

events occur. The brain/logic of the Smart Speaker will be 

aided through Recurrent Neural Networks, REST API 

architecture, and crowdsourced datasets to generate and serve 

intelligent responses.  
Inbuilt within our smart speakers can understand voice-based 

commands and control complex integrated systems of a smart 

home. Users start interacting with a regular smart speaker by 

waking up the Kasper voice assistant by calling out the 

“Kasper” wake-word, followed by regular dialogues-based 

interaction. Currently, developers have implemented AI 

algorithms that focus on improving the performance of 

conversational AI systems. This article describes the design 

and development of state-of-the art, Linux-based modern 

smart speaker prototype. The smart speaker discussed in this 

paper is constructed using off-the-shelf hardware components 

(Raspberry Pi, ReSpeaker v2, Raspberry Pi camera, regular 

speaker). In this work, to provide a seamless, full-duplex 

interaction, a microphone array with an on-board chip hosting 

DSP-based speech algorithms was selected and used to 

capture, process, and provide a noise suppressed voice feed. 

As a result, our proof of concept prototype demonstrates a rich 

 

354 

Copyright © Authors 
ISSN (Print): 2204-0595 

ISSN (Online): 2203-1731  



 
IT in Industry, Vol. 9, No.3, 2021 

 
 
user experience to interact with smart speakers by improving 

voice interaction with the device. Recent relevant work is 

done by authors from. We have used the same ReSpeaker v2 

microphone-array to provide advanced voice interaction 

capability for their microphone array and voice algorithm-

based smart hearing aid prototype. 

 

2. Methodologies A. 

Hardware Components  
●Raspberry Pi  
●ReSpeaker 2-mics Hat / USB mic / USB sound card  
● SD card  
● speaker  
● 3.5mm Aux cable/ JST PH2.0 connector  
A variety of alternatives were chosen before finalising these 

components.  
Alternatives Considered:  
The Raspberry Pi has a couple of contenders, albeit the 

establishment urges individuals to clone its thought, so rival 

probably won't be the correct word. They incorporate 

BeagleBoard and PandaBoard (which are both the 

organizations' names and their essential gadgets). Both are 

charitable associations yet with somewhat unexpected 

objectives in comparison to the Raspberry Pi Foundation. 

BeagleBoard is intended for grown-up equipment hobbyists, 

and PandaBoard expects to make a versatile programming 

stage accessible at a sensible cost. 
 
Like Raspberry Pi, they're both exposed boards with ARM 

processors and are HD video competent. In any case, 

BeagleBoards and PandaBoards have more connectors and 

association headers (pieces of the board that can be utilized by 

fastening extra equipment) than the Raspberry Pi, and the two 

gadgets are somewhat bigger. Coming up next aren't thorough 

arrangements of segments, yet a few highlights contrast from 

the Pi. For its planned instructive purposes, the Raspberry Pi 

has two significant benefits over the others. To start with, it is 

considered to be a finished working PC. You basically need to 

embed a SD card containing the OS, interface the peripherals 

and force, and it's all set. BeagleBoards and PandaBoards 

expect hookup to a host PC for introductory arrangement. In 

spite of the fact that they have comparable handling abilities, 

they take somewhat more expertise to get them completely 

utilitarian.  
Table 1. Comparison between BeagleBoard and PandaBoard  

BeagleBoardandBeagl PandaBoard  and 

eBoard-xM PandaBoard ES  
   

Cortex A8-based Dual-core ARM Cortex 

processor madeby A9  MPCore processor, 

Texas Instruments, also manufactured by 

running from 600 MHz Texas Instruments, 

to  720  MHz  on  the running at 1GHz on the 

BeagleBoard PandaBoard and 1.2 
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(depending  upon GHz on the ES 

version) and 1 GHz on    

the xM.      

   

128  MB  RAM  on  the 1 GB RAM  
original   BeagleBoard,    

but  256  MB  and  512    

MB RAM on the newer    

boards, respectively.    

    

DVI-D monitor DVI-D monitor 

connector   connector  

S-video connector  LCD expansion header 

Audio  in  and  out  (not Audio in and out 

just audio out)  One   USB   on-the-go 

One USB port on port and  two standard 

BeagleBoard and four USB ports  

USB ports on the xM WiFi and Bluetooth 

USB and DC power connectivity  

No RCA or   HDMI USB and DC power 

connector   No RCA connector 

       

 

Second, the other devices are much more expensive than the 

Raspberry Pi. For example, in April 2012, the pricing was 

$125 to $149 for the two main BeagleBoard models, and $174 

to $182 each for the two PandaBoard models. These prices are 

a far cry from the $25 and $35 base prices of the Raspberry Pi. 

Given its functionality and price, the Raspberry Pi seemed 

better poised for us.  
B. Smart Speaker Architecture  
KASPER provides access to KASPER on Linux distributions 

on desktop as well as hardware devices like Raspberry Pi. It is 

a headless client that can be used to interact with KASPER via 

voice only. As more and more features like multiple hotword 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 2. The finite State Machine 

 

detection support and wake button support were added to 

KASPER Linux, the code became complex to understand and 

manage. A system was needed to model the app after. The 

Finite State Machine was the perfect approach for such a 

system.  
The Wikipedia meaning of a State Machine is "It is a 

theoretical machine that can be in precisely one of a finite 
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number of states at some random time. The FSM can change 

starting with one state then onto the next because of some 

outside information sources; the change starting with one state 

then onto the next is known as a progress." 
 
This implies that in the event that you can demonstrate your 

application into a finite number of states, you may consider 

utilizing the State Machine usage.  
State Machine execution has the accompanying focal points:  
Better authority over the working of the application.  
Improved Error taking care of by making an Error State to 

deal with mistakes. 
 
States work freely which serves to modularize code in a 

superior structure. 
 
Regardless, we announce a theoretical State class. This class 

proclaims all the basic properties of a state and change 

technique. 
 
We declared the on_enter() and on_exit() conceptual method. 

These methods are executed on entering and exiting a state 

separately. The errand assigned for the state can be acted in 

the on_enter() method and it can let loose assets or quit tuning 

in to callbacks in the on_exit() method. The transition method 

is to transition starting with one state then onto the next. In a 

state machine, a state can transition to one of the permitted 

states only. Hence, we check if the transition is permitted or 

not prior to continuing it. The on_enter() and transition() 

methods additionally acknowledge a payload contention. This 

can be utilized to move some information to the state from the 

past state. We likewise added the components property to the 

State. Components store the common components that can be 

utilized across all the State and should have been initialized 

only once. We make a component class pronouncing all the 

components that should have been utilized by states.  
● Idle State: App is listening for Hotword or Wake  
Button.  
● Recognizing State: App actively records audio from 

Microphone and performs Speech Recognition. 
 
● Busy State: KASPER API is called for the response 

of the query and the reply is spoken.  
● Error State: Upon any error in the above state, 

control transfers to Error State. This state needs to handle the 

speak the correct error message and then move the machine to 

Idle State. 
 
Each state can be implemented by inheriting the base State 

class and implementing the on_enter() and on_exit() methods 

to implement the correct behavior. 
 
We also declare a KASPER State Machine class to store the 

information about current state and declare the valid 

transitions for all the states. 
 
We also set Idle State as the current State of the System. In 

this way, the State Machine approach is implemented in 

KASPER Linux. 
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C. Modified FSM Architecture  
During the underlying phases of KASPER: As the code base 

developed, it was getting hard to maintain code, so we selected 

to execute a Finite State Architecture in our repo. However, as 

there were new highlights actualised in the codebase, we 

understood that we were unable to deal with more than each 

inquiry in turn which limited a great deal of highlights. eg. The 

smart speaker was changed over to a basic Bluetooth speaker 

since no reaction with respect to playing/stopping were 

acknowledged. 
 
To settle this issue, we made a slight alteration in the 

architecture.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. The Modified finite State Machine 

 

1) Adding a Second Hotword Recognition Class  
To enable KASPER to handle the simultaneous question, The 

State machine should be set off while KASPER is giving out 

the principal reaction and to trigger the State Machine, we 

should have hotword recognition while KASPER is talking the 

response to the past inquiry. Thus, a hotword recognition 

motor is presently started each time the State Machine enters 

the bustling state.  
2) Modifying the State Machine Architecture  
After declaring pronouncing a second hotword recognition 

engine , we altered how the changes occur between the States 

of the KASPER State Machine. 
 
Subsequently, the callback that was set off was passed from 

the busy state. 
 
When the hotword is distinguished ,the state machine makes 

advances to the Recognition State while stopping the current 

Music and resumes the Music after the subsequent question 

has been finished. 
 
This is the manner by which KASPER measures different 

questions at the same time while still keeping up finite state 

architecture.  
D. Speech to text recognition  
Speech Recognition is basically making the computer 

understand what we speak. In general, a computer such that it 

can hear us and respond back to us and by "understand" we 

mean it would convert the speech into appropriate text. Thus 

speech recognition is also called the Speech to Text conversion 

process. It consists of a microphone for humans to speak, 

recognition of speech software, and a computer to 
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perform tasks. The basic recognition of the speech system is 

shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Speech Processing model of Kasper AI 

 

1) Speech to text engine  
Speech to text engines is used to feed sound waves into the 

computer for converting them into text. As sound waves are 

continuous (analog) signals the first thing is to do a sampling 

of the signal using the Nyquist theorem. This sampled signal is 

fed directly to our neural network but pre-processing of the 

signal is done in order to get better results and accurate 

predictions of spoken words. In pre-processing, we grouped 

large sampled signals into 20-millisecond small chunks. 

Preprocessed data which is in digital format is now fed to our 

Recurrent Neural Network (RNN) which is our main speech 

recognition model and it is based on many to many 

architecture which is used for prediction. 
 
2) Sampling and pre-processing of speech  
Sampling and pre-processing of data is an important step while 

designing STT Engine. This step decides the performance and 

time consumed by the engine. Sound waves are as we know 

one-dimensional. At every point in time, they have a single 

value based on the magnitude of the wave. To turn this sound 

wave into numbers just record the magnitude of the wave at 

equally-spaced points. This is called Sampling. This sampled 

data is directly fed into our recurrent neural network but for 

ease and better results data is preprocessed before applying to 

the network. Pre-processing is breaking the sampled data into 

smaller groups of data. Generally grouping the wave within 

some interval of time mostly for 20-25 milliseconds. Sampling 

and preprocessing together can be termed as the conversion of 

sound into numbers(bits).  
3) Recurrent Neural Network  
Now audio is given at input and is easy to process, it will be 

fed to our deep neural network. After feeding these small 

audio chunks of 20ms to our network it will figure out a letter 

that matches the spoken sound. RNN is a network that has a 

memory that decides future predictions. This is because as it 
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predicts a letter it will affect the likelihood of the next letter 

which it will predict. Consider an example, if we have said 

"MUM" so far, then it obviously will predict "BAI" next to 

complete the word "MUMBAI". There is less probability that 

one will say something which is completely out of context 

such as "ABC" after saying the word "MUM". Hence having a 

memory of previous predictions boosts our network to make 

more accurate predictions going forward. RNNs use the idea 

of sequential information. RNN is a neural network that has a 

memory that influences future predictions sequential 

information which is stored into the memory of RNNs and is 

used for predictions. The idea to use RNN instead of a 

traditional neural network is in traditional neural networks, it 

is assumed that every input & output doesn't depend on each 

other. Hence using a traditional neural network is a bad idea in 

speech processing. Prediction of any word in a sentence 

requires the information about the word which came before i.e. 

past word which is processed. Having a memory is one of the 

specialties of RNN that makes it unique from other networks. 

There are various neural networks available among them the 

Recurrent Neural network is used because it is more efficient 

than the others for speech recognition. 
 
4) Various Stt Engines Using RNN  
There are various engines used that are based on RNN‟s which 

uses python, C, java programming languages to build a 

Recurrent Neural Network. We have gone through CMU 

pocket-sphinx, snowboy hot word detection which uses python 

language, and RNN which shows good results also if we 

increase the database it will perform at it‟s best. Unlike 

Google‟s STT and Amazon‟s Alexa, CMU pocket-sphinx is 

an offline speech to text conversion engine provided that 

training of a dataset is done online. CMU online training portal 

must be given a set of words that we have to train. The training 

process is the same as discussed above in training at RNN. It 

uses python to build an LSTM network. Also recently 

launched engine Snowboy-hot word detection works offline 

but it is limited to the detection of one particular hot word. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5. Comparison of Wake Word Engines 
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3. Extracting Context  
After the Speech to text engine converts the audio input into 

text, the system needs to make some sense out of that. The aim 

is to find the intent of the audio query using some algorithm. A 

convolutional neural network (CNN, or ConvNet) falls under a 

class of deep neural networks, which is most commonly used 

to analyze visual imagery. Some common applications of CNN 

are image classification , facial recognition , object detection 

etc. Most recently, however, CNN have also found to perform 

well with problems associated with NLP tasks such as 

Sentence Classification, Sentiment Analysis, Text 

Classification, Text Summarization, Machine Translation and 

Answer Relations. Hence we decided to use CNN.  
A. General architecture of a Convolutional Neural Network  
A CNN is composed of "convolutional" layers and 

"downsampling" or "subsampling" layers. 
 
Pooling layers or downsampling layers are often placed after 

convolutional layers in a ConvNet, mainly to reduce the 

feature map dimensionality for efficiency, which in turn 

improves the actual performance. Convolutional layers consist 

of neurons that scan their input for patterns.  
Generally, the two layers, i.e., Pooling and Convolutional 

layers, are in an alternate order, but that's not a necessary 

condition. 
 
This is followed by a Multi Layer Perceptron with one or more 

layers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 6. CNN Architecture 

 

We compared a variety of algorithms to get the best results 

possible:  
1. Dynamic Programming based Fuzzy Approach  
2. K- Nearest Neighbors Algorithm  
3. Convolution Neural Networks  
4. Recurrent Neural Networks  
1) Fuzzy Matching:  
Dynamic Programming is a mathematical procedure of 

optimization using multistage decision progression. It is a 

general algorithm design method for solving problems 

formulated as repetitions with overlapping sub instances. In 
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1965 fuzzy set theory was developed by Lotfi A. Zadeh, which 

has become a significant device in dealing with roughness and 

imprecision in real-world problems. In 1970 Bellman applied 

fuzzy set theory in decision-making problems. The technique 

of solving optimization problems in dynamic programming 

involving fuzzy parameters is known as fuzzy dynamic 

programming. In our case, we used fuzzy DP and got an 

accuracy of 43.29.  
2) KNN(K Nearest Neighbors):  
K-nearest neighbors (KNN) algorithm comes in the category 

of supervised ML algorithm used for both classifications and 

predictive regression problems. However, it is primarily used 

for classification predictive problems in the industry. KNN 

uses feature similarity to predict new data points values, which 

means that the new data points will be assigned a value based 

on how closely it matches the training set's points. In our case, 

we used KNN to define a minimum accuracy above which all 

the other algorithms perform. The accuracy we got with KNN 

was 51.37. 
 
3) CNN(Convolutional Neural Networks):  
CNN is a deep, feed-forward artificial neural network where 

connections between nodes do not form a cycle. CNN's are 

generally used in computer vision; however, they've shown 

promising results when applied to various NLP tasks as well. 

CNN's are good at extracting local and position-invariant 

features, whereas RNN's are better when classification is 

determined by a long-range semantic dependency rather than 

some local key-phrases. For tasks where feature detection in 

the text is more important, for example, searching for angry 

terms, sadness, abuses, named entities, etc. CNN's work well, 

whereas for tasks where sequential modeling is more critical, 

RNNs work better. 
 
In our case, CNN had an accuracy of 78.23%.  
4) RNN(Recurrent Neural Networks):  
RNN comes under Neural Network category where the output 

from the last step is fed back as an input to the current step. It 

is a sequence of neural network blocks that are linked to each 

other like a chain. This allows RNN to exhibit temporal 

behavior and capture sequential data and is trained to 

recognize patterns across time, making it a more 'natural' 

approach when dealing with textual data since the text is 

naturally sequential. However, in our case, there wasn't any 

significant accuracy difference between RNN and CNN 

because text classification doesn't need to use the information 

stored in the sequential nature of the data. A big argument for 

CNNs is that they are much faster (~5x) than RNNs in 

computation time.  
In our case, RNN had an accuracy of 72.71%.  
How does the CNN architecture work for Sentence 

Classification?  
Just like images can be represented as an array of pixel values. 

Similarly, text can be represented as an array of vectors where 

each word is mapped to a specific vector in a vector space 
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composed of the entire vocabulary that can be processed with 

the help of a CNN. When we are working with sequential data, 

like text, we work with one-dimensional convolutions, though 

the idea and the application stay the same. We still want to 

pick up patterns in the sequence that become more complex 

with each added convolutional layer. Here, we are going to 

train a Convolutional Neural Network to perform sentence 

classification on data that we get after converting speech to 

text. 
 
We followed the following workflow:  
● We import the data and preprocess it into a desirable 

format(one we can work with) using pandas.  
● We use GloVe to obtain pre-trained word 

embeddings for our model. 
 
● Keras is used to train the data on a CNN architecture 

and evaluate the accuracy obtained on the validation set.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 7. Context Inference 

 

C. Our Classes  
Using CNN, we were able to classify sentences into 22 

different classes, which are:  
● Art and Beauty  
● Business and Finance  
● Communication  
● Connected Car  
● Food and Drink  
● Games, Trivia, and Accessories  
● Health and Fitness  
● Interests  
● Knowledge  
● Lifestyle  
● Movies and TV Shows  
● Music and Audio 

Published Online 16-April-2021 
 
 
● News  
● Novelty and Humour  
● Problem Solving  
● Productivity  
● Shopping  
● Social  
● Sports  
● Travel and Transportation  
● Utilities  
● Weather 

 

4. Result  
A privacy enabled smart speaker prototype was created. The 

prototype is “smart”, makes coherent conversations and can be 

customized according to the user’s requirements. A privacy 

focussed smart speaker was created, giving the user the ability 

to control the server and the client code. 

 

5. Conclusion  
Over 50% of the Indian population are expected to own a 

regular smart speaker by 2023, and it's predicted that smart 

speaker ownership would overtake tablets globally by 2022. 

This paper provides an overview of the technology and tools 

required to build a privacy first custom smart speaker.  
Kasper.AI is able to provide a custom skills system trained 

with CNNs to allow the speaker to be “smart” and make 

coherent conversations 
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