
IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 27

CAA: A Content Adapter Architecture for

Content Management Systems

Mark Joselli, Micheli Knechtel

Escola Politécnica

Pontifícia Universidade Católica do Paraná - PUCPR

Paraná, Brazil

mark.joselli@pucpr.br

Jose Ricardo Silva Junior, Marcelo Zamith, Esteban Clua

MediaLab, IC-UFF, Brazil

Eduardo Soluri

Nullpointer Tecnologias, Brazil

Abstract—This paper presents a Content Adapter

Architecture (CAA) for Content Management Systems (CMSs).

A CMS is a software application that maintains and keeps track

of every piece of content of a website. In the past, CMS has been

mainly used in developing websites and portals for desktop PCs.

For mobile devices such as smart phones and tablets, the web

content developed for PCs needs to be adapted in order to

provide the best possible user experience due to different

characteristics and constraints such as screen dimensions. This

adaptation task can be time consuming and resource intensive.

Most solutions resolve it by creating different resources or CMS

plugins for different devices. This paper proposes a novel

approach to adapt CMS content in a non-intrusive way, through

the use of templates which specify how the content should be

adapted. The CAA consists of a backend server and a front end

client. The server is responsible for the adaptation and provides

version control of content, amongst other features. The client,

built as a web application, is a thin layer which provides

interaction with the device features, and acts as a cache system to

reduce data transfer.

Keywords—CMS; content management systems; content

adaptation; multimedia; mobile devices; software architectures

I. INTRODUCTION

Mobile devices, like smartphone, tablets, and digital TVs
have many constraints [1], when compared to PCs, including
hardware constraints (processing power and screen size) [2],
user inputs (buttons, voice, touch screen and accelerometer),
and operating systems [3], (Android, Blackberry OS, iPhone
OS, Symbian and Windows Mobile). Due to all these different
characteristics, developing and adapting content for all these
devices and platforms become extremely difficult. In addition,
the context, user preferences, user locations, and time of use,
must also be taken into account [4]. The presented CAA
architecture was developed to adapt all content for mobile
devices.

In general, content adaptation includes not only the
adaptation of format and types, but also styles, dimensions,
data compression and specifications. The quality of user
experience can suffer from a non-adapted or poorly adapted
media [5]. Also, different content and information can be made
available for specific devices or systems, requiring a custom
adaptation or generation of the content, which the CAA can
provide.

Developing websites with CMSs offers many advantages
including better content organization, increased access to
resources, and greater organizational effectiveness. CMSs can
be used, natively or with plugins, for others devices such as
TVs and mobile devices, which can require the input of new
content. The CAA provides an adaptation of the web content
for the different devices with the use of templates, providing
generic, non-intrusive content adaptation. Also, natively, CMSs
do not provide cache mechanism, content compression, and
version control (for the content on the client) like the CAA
provides.

The CAA was developed to be used together with popular
CMSs like JOOMLA and DRUPAL, and also with proprietary
CMSs. This paper presents a test case of the CAA with a
mobile application accessing the adapted content, which were
originally created from resources made for web sites developed
by a proprietary CMS and a JOOMLA CMS. Earlier versions
of the CAA and their applications and concepts can be found in
[6-8].

Mobile devices usually do not have continuous
connectivity. When the network is not available, mobile
devices may still require some offline data in order to function
properly [9]. Also, the connectivity can still be very slow and
expensive [10], depending on the network connection and the
network carrier, requiring some form of data compression and
cache techniques to reduce data transfers. The CAA provides a
cache mechanism in order to fulfill these requirements. A
version control of the content is also provided, so that the
content transferred between the server and the client is only the
difference between the data that is on the device and the new
data from the server.

The CAA consists of two modules, a server and a client.
The server is responsible for adapting the content from
different CMSs though the use of templates, compressing the
adapted content in order to ensure delivery to the device, and
controlling the different content versions. The client is an
application installed on the device, which is able to open the
package, sent by the CAA, and render its content. Also,
through the client it is possible to use the native features such
as location, social network connection, statistical data
collection, etc. The client is implemented as a thin client using
a number of web technologies (HTML5, Cascading Style
Sheets and JavaScript) to provide the graphical user interface,

mailto:mark.joselli@pucpr.br

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 28

and a native code, to access all the available device
capabilities. In summary, CAA has the following features:

 ability to gather resources from different content
sources, such as CMSs;

 adaptation of this content for different device
characteristics;

 creation and control of content versions;

 collection of statistical data, in order to create users
profiles;

 a cache mechanism, in order to provide offline data;

 data compression for network data exchange;

 and a thin client application for content visualization
and server communication.

This work is divided as follows: Section II presents the
related works. Section III presents the CAA server and Section
IV shows the client. Section V shows the test case in order to
validate the presented architecture, and finally Section VI
presents the conclusions and future works.

II. CONTENT MANAGEMENT SYSTEM

Content and content management are current trends in the
world wide web [11]. A CMS is a computer system that has the
main objective of facilitating the maintenance of content [12],
[13]. The CMSs help in publishing, editing, and modifying
content as well as the overall maintenance from a central page
or control. It is normally used in a collaborative environment,
so most CMSs provide a collection of procedures, automatic or
manual, for managing the workflow.

The content managed by a CMS includes almost anything
from documents, movies, text, and pictures, to many others.
The CMS acts as a central repository for all this content, and
sometimes as a version control for the content.

The functionalities of a content management system can be
broken down into several main categories, such as content
creation, content management, publishing and presentation.
The presentation component compiles and presents the
information that the user sees [14]. The CAA was developed to
work with CMSs, providing a layer after the presentation,
where the data that would be present normally to a website is
adapted to mobile devices.

III. RELATED WORK

CMSs can be used to provide web content for different
types of devices. This can be done in different ways. Normally
it requires the publishing of different versions of content for
different platforms. Another common solution is the
development of plugins or add-ons for the CMS that could
achieve the same effect by adapting the resources. Nurminen et
al. [15] described the use of a Drupal CMS with some add-ons
for mobile website provisioning.

Some companies have developed CMSs specific for mobile
platforms, like Magnolia CMS [16], Cellular CMS [17],
Mobile CMS [18] and mFabrik [19] to name a few. They work

in a similar way to the traditional CMSs that are customized for
mobile content. Manashty et al. [20] presented the ARMrayan
MCMS, a CMS designed for J2ME mobile applications.
Moreover, the paper by Hildebrand et al. [21] described a CMS
platform for e-learning specific for mobile devices.

There were other projects that used middleware to adapt
content. Trinta et al. presented a middleware to support
multiplayer multi-platform games [22], [23]. A content adaptor
was used to transform the game information according to the
actual context of the player. Ubidoctor was another middleware
service [24] developed for the construction of ubiquitous
applications in the medical area. It provides the service of
session management, context management and content
adaptation. The content adaptation transforms the resources for
the ubiquitous healthcare applications.

Delicato et al. [25] and Tummala and Jones [14] described
their work on the context-awareness and location-awareness
problems, where specific CMS or middleware were developed
for these purposes. In this kind of application the content
delivery for the end-user is dependent on his context and/or
location. The CAA could also be further developed to include
this service, as the CAA templates can require specific data
from the CMS, and the thin client can provide information
about localization and send it to the CAA that would then
deliver the content for the matched location or the context.

One main disadvantage of the works presented so far is the
lack of generalization for use in other contexts, like different
content providers. One different approach reported was the
CAS service that provides content adaptation as a generic
service performing content adaptation of texts, audios, videos
and images for multi-platform applications [26], [27]. The CAS
service is modular and non-intrusive, similar to the CAA, but
lacking features such as cache, data compression and version
control of content.

In relation to the cache feature of the CAA, Li et al [28]
presented a statistical mechanism for maintaining cache
consistency in mobile environment. It tried to deliver a new
cache mechanism since most existing cache consistency
strategies assume reliable communication between mobile
terminals, and cannot adequately handle frequently offline
devices (a common situation on mobile devices). Our work
also uses cache, and tries to avoid inconsistency in the cache.
However, the CAA uses a simpler mechanism that requires the
verification of the resource hash code to achieve this purpose.

IV. THE CONTENT ADAPTER ARCHITECTURE SERVER

This section explains how the server part of the CAA
works. It is divided into three sub-sections to describe the core
elements, namely the content adaptation, the content version
control, and the identity server.

The CAA server is built as a web service that adapts and
creates content from CMS based on templates. The main
modules of the CAA server are shown in Figure 1.

The organization module at the top left corner is composed
of the resource providers, which can be CMSs or web portals.
All content is gathered by the controller and saved to a
database. The controller is the key service that connects all the

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 29

components, and makes them working together. The resources
are then adapted through the use of templates and saved on a
proprietary or cloud server, such as the Amazon S3 and
Cloudfront. Resources that come from secure services can also
be delivered and adapted, using the identity server. The push
notification services are accessed by a web service, and
triggered by the controller when new content arrives. The
process flow is illustrated in Figure 2.

The templates for customization and configuration of the
CAA have to be registered in the controller by a developer,
publisher, or editor. These templates are built upon an XML
based language, and they dictate how the CAA adapts the
content. Some content like icons and logos can be device
specific. In these cases the content can be stored in the CMS or
CAA server.

The architecture is built upon components. Based on our
previous experience in applying this architecture in different
domains, a variety of technical implementations were used to
abstract and create a general architecture where different
methods for context adaption, personalization and
contextualization can be achieved.

The CAA server is responsible for:

 periodically gathering content from the registered
CMSs;

 adapting content for the different platforms according
to templates;

 implementing a AAA server (Authentication,
Authorization and Accounting) in order to implement a
security server to communicate with servers that need
secure policies, for example, login to a secured CMS
for content;

 managing user statistical data; collecting it from the
devices and saving it for statistical analysis;

 sending push notifications to end users when necessary
(when configured to do so, like when new content
becomes available);

 cryptographing content based on public and private
keys, if needed;

 keeping an version control of the content on each user,
and sending new content accordingly;

 compressing content to send to users;

Fig. 1. Overview of the CAA Server

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 30

 generating statistical reports from the service logs, and
information gathered by the client.

In addition, the CAA has an error log keeping records of
any error or warning coming from resource gathering,
adaptation of content or new version generation. For example,
an error is generated when attempting to gather a resource that
is not available on the server, or when adapting content that
cannot be adapted according to the template. These error logs
can be delivered to registered emails, or be shown as web
pages.

A. Content Adaptation

The publication of content for the device can be done in
two ways: by content aggregation (pull); and content
syndication (push). Content aggregation is the ability to pull
content from CMS and adapt it though templates. Content
syndication is done mainly by the user in the CMS and requires
republishing of the content for the required device. In this way,
the content would only be copied to the CAA repository. The
content syndication is mostly used on content such as icons and
logos.

The content adaptor is responsible for gathering the content
from the CMS and adapting it for the required devices. This

component normally uses an XML for the configuration of the
adapter, and a series of XMLs describing how each piece of the
content should be adapted. It is a simple process using an XML
to gather information about the CMS service that provides the
content, and how it should gather and adapt this content.

The component can gather the information in two ways, by
way of a push notification made by the CMS service, or in an
automatic manner with a timer. The push notification requires
that this service is implemented in the CMS, but it has the
advantage that the content can be adapted as soon as published.
In the automatic manner, this implementation is not required,
but the content is only published for the media when the
service runs.

This service can support different content types, like sound,
music, documents, videos and HTMLs. The adaptations of
these content types are specified by templates using XML
descriptors. These templates are implemented using the
template method design pattern, which defines the program
skeleton of an algorithm, in this case the methods needed for
the content adaptation.

<Config>

 <Contents cms='Joomla'>

 <content type='automatic'>

Fig. 2. Process Flow of the CAA Server

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 31

 <service timer='2h'>

http://201.200.1.132/cinema.php

 </service>

 <paramters>

 <param type='datetime'>

date

 </param>

 </paramters>

 <template>

 cinema.template.xml

 </template>

 </content>

 </Contents>

</Config>

With the XML above, the CAA gathers information from a
Joomla CMS using a scheduler of two hours, i. e., it will run
every two hours to check for new contents. When new content
is available, it will gather the content using the
http://201.200.1.132/cinema.php web service, which requires
the datetime as an input. For the adaptation of the content it
will use a template which is defined in the file
cinema.template.xml.

Scheduler pattern is used in order to call each CMS service,
when they are configured as a timer for content gathering. The
command pattern is used in order to encapsulate all the
information needed for the service to be called, when the time
comes.

It can also be seen in the XML tag <Contents> in which
each content piece is described, and how each should be
adapted for the desired platform using another XML. As an
example the XML <Template> below uses an image adaptation
to present a 320x240 image for the end-user.

<Template>

 <method>imageAdapt</method>

 <input type='image'>imageSrc

 </input>

 <output>

 <type>

 image

 </type>

 <format>

 png

 </format>

 <dimension>

 320x240

 </dimension>

 <quality>

 high

 </quality>

 <alpha>

 true

 </alpha>

 </output>

</Template>

The XML above will use an imageAdapt method to adapt

the resource and it takes as input an image. As the output it will
provide an image with the following characteristics: a png
format with 320x240 of size, with high quality and alpha
channel.

There is a series of templates already built as components
for the architecture, like images, audio and video. Sometimes,
different devices implement different multimedia capabilities;

and therefore, they may require different media formats. The
CAA provides the adaptation of format types and image
properties.

The image adaptation is normally done by the
ImageMagick library, a free open source library, used by the
CAA to change the image properties, like dimension, format
and quality. For the adaptation of audio or video, the CAA uses
the FFMEPG library, another open source library, to convert
video/audio files, and at the same time, to change properties
such as frame rate, format type, quality and dimension. The
configuration for each common device (mobile device) is
registered in the application.

There are also adaptations of HTML pages for the devices.
This is achieved by templates, where some tags are selected
and others adapted. As defined by templates, the CSS and
Javascripts files are sometimes modified or replaced in order to
achieve a better final result.

These classes were implemented as a factory pattern,
illustrated in Figure 3, where it takes an XML as input, and
gives the object with the characteristics of the generated new
resource as output. This way the architecture keeps the code
clean by creating objects without specifying the exact resource
class of object that will be created.

In this UML, there are the main classes of content
adaptation. The image class is responsible for converting the
images and it has the following children: the sprite generator,
which creates a sprite though combining a series of images into
one single image for 2D animations; the Image2square, which
is created by inserting blank pixels on the image until it has the
dimension of power of 2, required for the use on some mobile
openGL devices; the image aspectRatio, which converts the
images, with different aspect ratio, by resizing it and inserting
or removing transparent pixels of the image; the Crop Image,
which crops the image to a different size; and the imageResize,
which resizes the image according to a scale factor. There is
also a video adapter, which converts the video dimensions, bit-
rates, codecs and encapsulations; and the text adapter for the
conversion of text, by removing and changing characters, from
different char-sets. The HTML adapter transforms HTML to
different platforms, by removing features or even changing the
code. The sound adapter converts the sound from different bit-
rates and different formats.

B. Content Version Control

The content version control is responsible for keeping
control of each version of the adapted content. Every time the
CAA gathers content from the CMS, or when the templates are
changed, it generates a new version in its repository. This
component was built using a balk pattern, which is a design
pattern that only executes an action on an object when the
object is in a particular state. In this case it only updates and
generates a new version of the content, when all the content
gathering and adaptation has been completed.

The content can change frequently, and each user can have
different versions. When users update their content, they use
their own version numbers that were previously saved in the
cache. Therefore, their devices only download the needed

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 32

content for the latest version, keeping the communication
between the server and device to a minimum.

All the content generated by the content adaptation, is
normally saved in the cloud, using Amazon Simple Storage
Service, or similar services for cloud storage.

Additionally all the content sent to the user is compressed
in a zlib format by using the zlib library. Compression helps to
reduce traffic, which is good for mobile devices that sometimes
suffer from slow network and expensive data plans.

C. Identity Server

The identity server is used as: an AAA server
(Authentication, Authorization and Accounting); a certification
generator and manager for security connection between devices
and the service; a protection for special content by
cryptography; and a statistics repository.

Based on the concept of Authentication, Authorization and
Accounting, this component is responsible for implementing
the security requirements for data exchange and use of
restricted content among the clients, devices, and servers.

Being an identity server, it is responsible for provisioning
the user and its devices with the available access of content.

This also requires the creation and management of certification
keys and tokens for the required content cryptography.

This server also collects statistical information of each
device, each user, content versions, device capabilities and how
the user uses the content. This server can provide a real-time
statistical report, grouping by user, device or time.

V. THE THIN CLIENT

The thin client is responsible for: gathering data from the
CAA server; providing the server with the device
characteristics; implementing a cache system for the gathered
data for offline use; and gathering of user data for statistical
reports. An overview of this client can be seen in Figure 4.

The client was developed as a framework, in order to be
reused in other projects. It was mainly developed in object-C
and Java, in order to work with the Apple IOS and Google
Android platforms. The clients are also being developed for
other platforms, such as Windows mobile, Blackberry and
J2ME. This client is capable of displaying different resources
like HTMLs, images, audios and videos. It can also process
and show a specific data structure for maps, which are used in
the validation. In addition, components were also implemented
for the localization system, cache management, statistical data

Fig. 3. UML of the Content Adapter

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 33

collection and social network (Facebook, Twitter, and
Google+) integration.

Most of the customization in the application is specified via
XMLs, such as the XML below, which configures how the
client should download the data and where it should save it.

<ApplcationPush>

 <server timer='2h'>

 http://201.200.1.210:8000/ContentArch.js

 </server>

 <parameters>

 <param type='datetime'>

 date

 </param>

 <param type='model'>

 iPhone

 </param>

 <param type='gameengine'>

 cocos2d

 </param>

 <param type='cryptografy'>

 true

 </param>

 </parameters>

 <cache>

 <maxSize>

 100MB

 </maxSize>

 <diretory>

 APPDIR/ContentArch/Cache/

 </diretory>

 <param type='cryptografy'>

 false

 </param>

 </cache>

 <statistics>

 <timeBetweenUpdates>

 true

 </timeBetweenUpdates>

 <resourcesViewed>

 true

 </resourcesViewed>

 <dateTimeAppUse>

 true

 </dateTimeAppUse>

 </statistics>

</ApplcationPush>

The XML above will configure the client services for data,
cache and statistical data collection. The XML sets the
application to call the server every two hours (only if the
application is running and has a network connection) on
http://201.200.1.210:8000/ContentArch.js web service that
requires a datetime as input, the device model (iPhone), the
game engine used (cocos2d) and a variable saying that it will

Fig. 4. Overview of the Thin Client

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 34

not require cryptography. This XML will also configure the
cache that will have a maximum of 100 MB, no cryptography,
and will use the directory APPDIR/ContentArch/Cache/ to
save the content. The statistical data collection is configured by
having the XML monitoring the time between updates required
by users, the resources users view and the date/time of user
interactions with the application.

This client was implemented mainly as a hybrid application
consisting of web apps and native apps. Web apps are web sites
in which all the content and logic are made exclusively for each
device, but they cannot access some of the capabilities of the
device. Native apps are implemented on the device, with a
higher cost of implementation, but they can access all the
device functionalities required by developers. A hybrid
application is a mix of both web and native apps. It uses mostly
web for the interface, but is still a native app, so it can use all
the resources of the device, similar to a native app.

The AAA (Authentication, Authorization and Accounting)
client is responsible for the implementation of user
identification procedures and establishment of permissions. It
supports security communication through the https protocol
and cryptography encryption and decryption.

The client also provides a service locator, where all the
device capabilities are mapped, in order to provide the best
available content for the end-user. These capabilities can be
device model, screen size, location services, available input
types, camera, and all the characteristics of the device available
for the client.

The client uses extensively the cache for its content. It uses
this cache for providing the end-user with offline content and
also minimizes the data transfer between updates. This cache
can also be cryptographic or compressed if needed by the
application. The cache consistency can be a problem in some
devices when the network data exchange fails [28]. This client
only updates its version after gathering all the data and
verifying its hash code. This client also uses a service to save
the session data, and to collect statistics if needed by the server.

To update the data in the client, the following workflow is
used: first the device, if registered gets a push notification of
new content availability; next when the user opens the
application, the device authenticates it and gathers from the
server the needed resources for its update; if the user has no
available connection, the application starts without this update
process, by accessing the cache resources. Figure 5 illustrates
this process.

Fig. 5. Process Flow of the CAA Client

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 35

VI. VALIDATION

In order to validate the architecture, the CAA was used in a
commercial project for shopping centers. The application is a
hub containing mini-applications of different malls, with
different CMSs. These mini-applications have the
responsibility of being an information channel of the mall,
where users can obtain information such as cinemas, news,
sales, and also a mapping system for locations of stores and car
parks.

One of the main problems of these kinds of applications,
without the use of the CAA, is that the content may come from

different services and different formats. With that, the CAA
uses different configurations to gather content from different
providers, but to show the same result on the client. In this
application, there were two different CMSs, a Joomla CMS and
a proprietary web service. These were existing CMSs used for
the mall web sites. The same content from these sites was used
by the application as pull service, where the content was
gathered five times a day. The use of the CAA architecture
saves some rework when customizing difference platforms for
releasing different contents.

The thin client used for this application was adapted in
order to work on iPhones, iPads, Android phones and Android

Fig. 6. The CAA in action adapting HTML content and images for the web site, tablet, and smart phone.

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 36

tablets. This client shows the following content types: images,
HTMLs, videos, maps, and is integrated with the social media
sites Facebook and Twitter.

This application also collects statistical data that is sent
from time to time to the server for usage analysis. This
information can be used later for purposes of promotions, sales
and other events of the malls.

Figure 6 shows an example of the same news content being
displayed on different devices - the original content on the web
site, the adapted content on a tablet, and the adapted content on
a smart phone. From these images, it can be seen that different
layouts and image sizes can be adapted by using the CAA
architecture.

This work has not been compared to other architectures due
to different paradigms. One possible comparison is the CAS
reported in [26], [27], but the authors of this work did not have
access for the project. The CAS only provides content
adaptation of texts, audios, images and videos, but not HTMLs.
Also, the CAS does not provide caching, data compression and
version control.

VII. CONCLUSIONS

Devices nowadays have many different characteristics and
constraints, requiring specific content. With that, these devices
need the publishing of specific content of the CMS or the
adaptation of already published content. This paper has
presented a new adapter for CMS content adaptation that
provides a layer between the CMS and the devices.

Moreover, devices can have connection constraints, like
availability, and also this data can be very expensive. This
presented architecture also provides a version control system
and a cache system in order to provide offline data and also
keep the data communication to a minimum.

Future works consist of adapting and evaluating the
platform to be used as a content provider for a multi-display e-
learning platform [29] and the adaptation of the content adapter
to a cloud GPU computing architecture using CUDA [30].

REFERENCES

[1] M. Joselli and E. Clua, “grmobile: A framework for touch and
accelerometer gesture recognition for mobile games,” in Proceedings of
the 2009 VIII Brazilian Symposium on Games and Digital
Entertainment (SBGAMES ’09), Washington, DC, USA, IEEE
Computer Society, 2009, pp. 141–150. [Online]. Available:
http://dx.doi.org/10.1109/SBGAMES.2009.24

[2] J. R. da Silva Junior, M. Joselli, E. Clua, M. Pelegrino, and E.
Mendonça, “An architecture for new ways of game user interaction
using mobile devices,” in SBGames, SBC, 2011.

[3] M. Joselli, E. B. Passos, J. R. S. Junior, M. Zamith, E. Clua, and E.
Soluri, “A flocking boids simulation and optimization structure for
mobile multicore architectures,” in Proceedings of SBGames 2012, pp.
83–92.

[4] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P.
Steggles, “Towards a better understanding of context and context-
awareness,” in Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing, (HUC ’99), London, UK, UK:
Springer-Verlag, 1999, pp. 304–307.

[5] F. Agboma and A. Liotta, “Quality of experience management in mobile
content delivery systems,” Telecommunication Systems, vol. 49, no. 1,
pp. 85–98, 2010.

[6] M. Joselli, J. R. S. Junior, M. Zamith, E. Clua, and E. Soluri, “A content
adaptation architecture for games,” in Proceedings of SBGames 2012,
pp. 17–25.

[7] M. Joselli, E. Soluri, J. R. S. Junior, M. Zamith, and E. Clua, “mCMS: A
content management system adapter architecture for mobile devices,” in
XI Workshop de Ferramentas e Aplicações (WFA) – Webmidia 2012,
SBC, 2012.

[8] M. Joselli, E. Soluri, J. R. S. Junior, M. Zamith, E. Clua, and K. Micheli,
“A content adapter architecture for CMSs,” in Proceedings of the
International Conference on Information Technology and Applications
(ICITA), IEEE, 2013, pp. 80–85.

[9] M. Zamith, M. Joselli, E. W. G. Clua, A. Montenegro, R. C. P. Leal-
Toledo, L. Valente, and B. Feijo, “A distributed architecture for mobile
digital games based on cloud computing,” in Proceedings of the 2011
Brazilian Symposium on Games and Digital Entertainment
(SBGAMES), IEEE, 2011, pp. 79–88.

[10] M. Joselli, J. Ricardo da Silva, M. Zamith, E. Clua, M. Pelegrino, E.
Mendonca, and E. Soluri, “An architecture for game interaction using
mobile,” in Proceedings of the IEEE Games Innovation Conference
(IGIC), Rochester, New York, USA, 7–9 September, 2012, pp. 46–50.

[11] T. Nguyen and C. Girimohan, “Global content management systems,”
Multilingual Computing and Technology, vol. 45, no. Supplement 45,
pp. 8–13, 2002.

[12] J. Souer, D.-J. Joor, R. Helms, and S. Brinkkemper, “Identifying
commonalities in web content management system engineering,” Inter-
national Journal of Web Information Systems (IJWIS), vol. 7, no. 3, pp.
292–308, 2011.

[13] J. Souer, P. Honders, J. Versendaal, and S. Brinkkemper, “A framework
for web content management system operations and maintenance,”
Journal of Digital Information Management (JDIM), vol. 6, no.4, pp.
342–347, 2008.

[14] H. Tummala and J. Jones, “Developing spatially-aware content
management systems for dynamic, location-specific information in
mobile environments,” Proceedings of the 3rd ACM international
workshop on wireless mobile applications and services on WLAN
hotspots (WMASH ’05), Cologne, Germany, 2–Sept, 2005, pp. 14–22.

[15] J. Nurminen, J. Wikman, H. Kokkinen, P. Muilu, and M. Grnholm,
“Drupal content management system on mobile phone,” in Proceedings
of the 5th IEEE Consumer Communications and Networking
Conference (CCNC 2008), Las Vegas, Nevada, USA, 10–12 January,
2008, pp. 1228–1229.

[16] M. Internation, “Magnolia CMS,” Jun. 2012. [Online]. Available:
http://www.magnolia- cms.com/

[17] C. C. M. Services, “Cellular CMS,” Jun. 2012. [Online]. Available:
http://www.cmslive.com/

[18] MobiManage, “Mobile cms,” Jun. 2012. [Online]. Available:
http://www.mobimanage.com/mobile-cms.cfm

[19] mFabrik, “mfabrik web and mobile cms,” Jun. 2012. [Online].
Available: http://webandmobile.mfabrik.com/

[20] A. R. Manashty, M. R. A. Raji, Z. F. Jahromi, and A. Rajabzadeh,
“Armrayan multimedia mobile cms: a simplified approach towards
content-oriented mobile application designing,” in Proceedings of the
International Conference on Wireless Communication and Mobile
Computing (ICWCMC 2010), World Academy of Science, Engineering
and Technology, vol. 62, pp. 62–67, 2010. [Online]. Available:
http://arxiv.org/abs/1009.5347

[21] A. Hildebrand, T. C. Schmidt, and M. Engelhardt, “Mobile elearning
content on demand,” Information Sciences, vol. 5, no. 2, pp. 94–103,
2007. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.123.9176

[22] F. Trinta, D. Pedrosa, C. Ferraz, and G. Ramalho, “Evaluating a
middleware for crossmedia games,” in Proceedings of the 5th
international workshop on Middleware for pervasive and ad- hoc
computing: held at the ACM/IFIP/USENIX 8th International
Middleware Conference, (MPAC ’07), New York, NY, USA, ACM,
2007, pp. 43–48. [Online]. Available:
http://doi.acm.org/10. 1145/1376866.1376874

IT in Industry, vol. 1, no. 1, 2013 Published online 11-Nov-2013

Copyright © 2013 The Authors 37

[23] F. Trinta, D. Pedrosa, C. Ferraz, and G. Ramalho, “Evaluating a
middleware for crossmedia games,” Computers in Entertainment (CIE),
vol. 6, no. 3, pp. 40:1–40:19, Nov. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1394021.1394033

[24] J. R. B. Diniz, C. A. G. Ferraz, F. A. M. Trinta, H. N. Melo, and L. M.
Santos, “Avaliao de um servico de gerenciamento de sessao para
ambientes de medicina ubqua,” in Proceedings of the 14th Brazilian
Symposium on Multimedia and the Web, (WebMedia ’08), New York,
NY, ACM, 2008, pp. 4–11.

[25] F. C. Delicato, I. L. A. Santos, P. F. Pires, A. L. S. Oliveira, T. Batista,
and L. P`ırmez, “Using aspects and dynamic composition to provide
context-aware adaptation for mobile applications,” in Proceedings of the
2009 ACM symposium on Applied Computing, (SAC ’09), New York,
NY, USA, ACM, 2009, pp. 456–460. [Online]. Available:
http://doi.acm.org/10.1145/1529282.1529381

[26] D. Carvalho and F. Trinta, “Content adaptation for multiplatform
applications,” in Proceedings of the XV Brazilian Symposium on
Multimedia and the Web, (WebMedia ’09), New York, NY, USA,
ACM, 2009, pp. 41:1–41:4. [Online]. Available:
http://doi.acm.org/10.1145/1858477.1858518

[27] F. T. Diego Carvalho, “Servico de adaptacao de conteudo para
aplicacoes multiplataforma,” in Anais do 3o Simpsio Brasileiro de
Componentes, Arquiteturas e Reutilizao de Software (SBCARS 2009),
Natal, RN, Set 2009.

[28] W. Li, E. Chan, D. Chen, and S. Lu, “Maintaining probabilistic
consistency for frequently offline devices in mobile ad hoc networks,” in
Proceedings of the 2009 29th IEEE International Conference on
Distributed Computing Systems, (ICDCS ’09), Washington, DC, USA,
IEEE Computer Society, 2009, pp. 215–222. [Online]. Available:
http://dx.doi.org/10.1109/ICDCS.2009.23

[29] J. Delgado, M. Joselli, S. Stanzani, S. M. Sadjadi, E. Clua, and H.
Alvarez, “A learning and collaboration platform based on sage,” in
Proceedings of the 14th Western Canadian Conference on Computing
Education, ACM, 2009, pp. 70–76.

[30] M. S. Doost, S. M. Sadjadi, J. R. S. Jr, M. Zamith, M. Joselli, and E.
Clua, “Architecture of request distributor for gpu clusters,” in
Proceedings of the Third Workshop on Applications for Multi-Core
Architectures (WAMCA), IEEE, 2012, pp. 13–18.

