
IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

Area and Power Efficient Fused Floating-point Dot Product Unit based on Radix-2r

Multiplier & Pipeline Feedforward-Cutset-Free Carry-Lookahead Adder

M.Madhu Babua,b, K.Rama Naidub

aResearch Scholar,JNTUA Ananthapuramu,India,515002
bDepartment of Electronics and Communication Engineering,JNTUA CEA,India,515002

Abstract

Fused floating point operations play a major role in many DSP applications to reduce operational area & power
consumption. Radix-2r multiplier (using 7-bit encoder technique) & pipeline feedforward-cutset-free carry-lookahead
adder(PFCF-CLA) are used to enhance the traditional FDP unit. Pipeline concept is also infused into system to get
the desired pipeline fused floating-point dot product (PFFDP) operations. Synthesis results are obtained using 60nm
standard library with 1GHz clock. Power consumption of single & double precision operations are 2.24mW & 3.67mW
respectively. The die areas are 27.48 mm2, 46.72mm2 with an execution time of 1.91 ns , 2.07 ns for a single & double pre-
cision operations respectively. Comparison with previous data has also been performed. The area-delay product(ADP)
& power-delay product(PDP) of our proposed architecture are 18%,22% & 27%,18% for single and double precision
operations respectively.

Keywords: Pipeline fused floating-point dot product (PFFDP), pipeline feedforward-cutset-free carry-lookahead adder
(PFCF-CLA), IEEE Std.754, double-base number system (DBNS)

1. Introduction

In the recent past, demand for the floating point op-
erations has been increasing in DSP (scientific and engi-
neering) applications. Floating-point operations has large
dynamic range that overcomes scaling and overflow /un-
derflow problems arises with fixed point operations[1, 2, 3].
IEEE-754 Standard [4] is considered as the base floating-
point format to maintain uniformity and has universal ac-
ceptance. This format exhibits single and double precision
formats with 32/64 bit operations respectively.

Fused floating-point primitive operations have been de-
veloped with primary focus on reduction of delay and cir-
cuit area. Fused dot product(FDP) operation is an exten-
sion of fused multiply-add(FMA) operation [1, 3, 5, 6] .
They outperform discrete floating-point adders and mul-
tipliers in many aspects like latency [7] & area. The over-
all optimization in rounding error is an additional add-on
to the operation. A single FDP can replace floating-point
adder and floating-point multiplier. Many DSP algorithms
are rewritten to suite FDP operations.

Based on radix-2r arithmetic [8, 9, 10, 11], the oper-

ational upper limit is
⌊
(N+1)

r + 2(r−2) − 2
⌋

where ‘b c’ is

the ceiling function i.e b20.12c = 21. The value ‘r’ can

be calculate using 2 ·W (

√
(N+1)·log(2)

log(2)) where ‘W’ is Lam-

bert function. For any value of N this upper limit should

Email addresses: madhubabu07.ece@jntua.ac.in (M.Madhu
Babu), krnaidu.ece@jnuta.ac.in (K.Rama Naidu)

be lower than (2 · N
log(N)). This method is a variant of

Pinch’s method, where splitting of binary representations
using fixed weights are changed to fixed length r.

The remaining paper is organized as follows: Prelim-
inaries of FDP algorithm is given in Section 2. The pro-
posed architecture is elaborately presented along with de-
sign of radix-2r multiplier & design of adder in Section 3.
Section 4 deals with performance and discussion of the re-
sults. Finally conclusion and future scope of the work are
given in Section 5.

2. Preliminaries

2.1. Floating-point DOT Product(FDP) Operation

Generalized expressions for floating-point addition (FPA)
& floating-point dot product (FDP) are

FPA =

n∑
i−0

Ai (1)

FDP =

n∑
i−0

AiBi (2)

where Ai,Bi are floating-point operands that can be rep-
resented as

Ai = (−1)Sai . 2(Eai−bais). Mai (3a)

Copyright c©Authors ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

Bi = (−1)Sbi . 2(Ebi−bais). Mbi (3b)

where Sai, Sbi are the sign bits, Eai, Ebi are the biased
exponents and Mai,Mbi are the significant bits. The n-bit
FDP can be expanded as

n∑
i−0

AiBi =

n∑
i−0

[(−1)Sai . 2(Eai−bais)Mai]

[(−1)Sbi . 2(Ebi−bais)Mbi]

(4)

That can be written as

n∑
i−0

AiBi =

n∑
i−0

[(−1)Sai∧Sbi .2(Eai+Ebi−2bais)(MaiMbi)]

(5)

where Sai∧Sbi , Eai+Ebi & Mai ×Mbi are represented as
Sci , Eci & Mci respectively. “∧” represents xor operation.
The resultant value will be

n∑
i−0

AiBi =

n∑
i−0

[(−1)Sci . 2(Eci−2bais). Mci] (6)

2.2. Review of Error Analysis

Floating-point computations suffer from two types of
errors: propagation error and rounding error. Propagation
error deals with input data and rounding error occurs due
to rounding of end results of performed operations [3].

The propagation error can be defined as

x(a, b) =x(â, b̂)+

∂x(â, b̂))

∂a
(a− â) +

∂x(â, b̂))

∂b
(b− b̂)

(7)

where a,b are precised values and â, b̂ are floating values.
By using Lagrange’s Mean-value theorem Eq.7 is modified
as

εprop =

∣∣∣x(a, b)− x̂(â, b̂)
∣∣∣

x(a, b))

≈ x′(â, b̂)â

x(â, b̂)
εa +

x′(â, b̂)̂b

x(â, b̂)
εb = Maεa +Mbεb

(8)

Here Ma,Mb are amplification factors. εa, εb are error de-
viations w.r.to a & b. They are purely based on the type of
operation performed (addition / multiplication). Amplifi-
cation factors for floating-point addition operations are as
follows

Ma =
x′(â, b̂)̂b

x(â, b̂)
=

b̂

â+ b̂
(9a)

Mb =
x′(â, b̂)̂b

x(â, b̂)
=

â

â+ b̂
(9b)

The propagation error amplification factors for floating-
point multiplication operation can be written as

Ma =
x′(â, b̂)â

x(â, b̂)
=
âb̂

âb̂
= 1.0 (10a)

Mb =
x′(â, b̂)â

x(â, b̂)
=
âb̂

âb̂
= 1.0 (10b)

The rounding error is defined as overall error of a floating-
point operation.The relevant formula is derived as follows,
where the floating-point significant precious value is given
by

z = (1.0 + p12−1 + p22−2 + ..+ pn2−n+

pn+12−(n+1) + ...+ pn+222−(n+22) + pn+232−(n+23))2e

(11)

The floating-point representation is

ẑ = (1.0 + p12−1 + p22−2 ++ pn2−n)2e (12)

So the rounding error will be

εround =
z − ẑ
z

=
(pn+12−(n+1) ++ pn+232−(n+23))

(1.0 + p12−1 + p22−2 ++ pn+232−(n+23))

(13)

Equations(8) & (13) are considered as propagation and
rounding errors respectively. Combination of both leads
to overall error for any floating-point arithmetic model.

In fused floating-point dot product unit overall error
can be calculated by using

EGn = 3. εprpo + 3. εround (14)

EFDP = 3. εprpo + εround (15)

From Eqs.(14)&(15) we can conclude that rounding error
of FDP unit is one-third of rounding error of discrete op-
erations.

3. Proposed Architectures

Figure 1 shows enhanced version of traditional FDP
[12] with four stage pipeline concept, where the focus is on
parallel multiplier and PFCF-CLA adder. The remaining
stages are alignment, 2’s compliment, leading zero antic-
ipatory(LZA) and finally rounding & normalization op-
erations. LZA is pre-corrected operand to calculate the
number of leading zeros. LZA is composed of two vectors
computation followed by leading zero detector(LZD)[13].
In order to make this fused FDP much faster pipeline
concepts are implemented, by replacing traditional ripple

Copyright c©Authors 783 ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

Figure 1: PFFDP Operational flowchart

carry adder with PFCF-CLA adder & traditional array
multiplier with 2r multiplier, rest of the stages are re-
tained. These changes enhance the overall efficiency of
the pipeline fused FDP (PFFDP) operations.

Double based number system(DBNS) needs O(k
logk)

addition operations to perform k-bit multiplication oper-
ation [14]. Complexity of the multiplier depends on win-
dow size of the operation. General conversion tasks are
of two types look-up table(LUT) and memory free algo-
rithms approach. LUT conversion approach is consider-
ably faster than that of memory less approach. Because,
there is no need for extra hardware to implement the con-
version logic. Considering hardware point of view, it is
decided not to use large size LUTs. In general, larger the
LUTs lesser the usage of addition/subtraction operations.
However, computational experiments prove that as the size
of LUTs increase beyond a certain point, the usage of ad-
dition/subtraction operations doesn’t reduce significantly
and also leads to exponential growth in area complexity.

The generalized representation of multiplicand will be

Y =

n∑
i=0

ai

b(i)∑
j=1

sji2
cji

 (16)

where n is maximum value, ai, b(i) denote number of
binary exponents that are multiplied by ai, c

j
i represents

jth binary exponent of ai, s
j
i = ±1 is sign of 2c

j
i . This gen-

eralized expression given in 16 is much better than DBNS.
It is sufficient that ai = {1, 3, 5, 7} to represent any inte-
ger with 7-bit, where as the DBNS representation needs
digit set of ai = {1, 3, 9, 27, 81} [15].The generalized non
negative 7-bit integer can be represented in x1±x2, where
x1, x2 ε{1.2n, 3.2n, 5.2n, 7.2n} and n = {0, 1, ..., 6, 7}.

Table 1: 7-bit Encoder Representation

1st Term 20 21 22 23 24 25 26 27

1 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

2nd Term
1 0 0 0 0 0 0 0 0
3 -1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

Any number can be represented by using matrix repre-
sentation form that resembles DBNS representation. Un-
like DBNS representation, we use first four rows to form
one term and the second four rows to form the other term.
Combination of these two terms gives the desired value
as shown in Table 1. This table helps to represent any
7-bit number with the combination of first and second
terms. However, we have to take care of the first term
which should be always positive number and the second
term may be positive or negative number that depends
on the number representation. As an example, numeric
value 125 is represented in Table 1. The value 125 is
deduced by adding 128 + (−3) = 125. This can be de-
coded as 1.27 = 128 as first term and 3.(−1).20 = −3
as second term. This is checked for ample number of
random values and almost all are satisfying the matrix
given in Table1. This table helps us to generate 11-bit
number representation as follows: The multiplicand val-
ues {1,3,5,7} in both first and second terms are represented
by using 2-bits each {00,01,10,11} respectively. They are
denoted as {m1,m2} as shown in Fig.2. The powers of
2 {20,21,22,23,24,25,26,27} are decoded with 3-bits each
{000,001,010,011,100,101,110,111} respectively denoted as
{n1, n2}. Finally 1-bit for sign representation (second term
only) denoted by {s2}. Therefore by accumulating all the
bits for first term and second term leads to 11-bit rep-
resentation i.e.{00 111 01 0 000}. One more example to
illustrate 7-bit encoder by taking numeric value 96 and
its 11-bit representation will be {00 101 00 1 110}, where
“00” represents ‘1’, “101” represents 2(101)2 and the first
term will be (1).(2(101)2) = 32. In the same way second
term will be “00” = ‘1′, “110” = 2(110)2 and ‘1’ denotes
positive number,deduces to (1).(2(110)2) = 64. The final
result will be 32 + 64 = 96.

The 7-bit encoder is used in 32-bit multiplier where
32-bit is split into four 7-bit data, starting from LSB and
the remaining 4-bit is zero padded at MSB, this results
in parallel 32x32 multiplier. One 32-bit multiplicand ‘X’
uses 5 encoders,each encoder converts respective 7-bit data
into 11-bit data as shown in Fig.2. The multiplicand ‘Y’
is used to deduce 1Y,3Y,5Y,7Y by using shift and add op-
erations i.e. 3Y = (Y << 1) + Y , 5Y = (Y << 2) + Y
& 7Y = (Y << 3) − Y respectively. Correct multipliers

Copyright c©Authors 784 ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

Figure 2: Radix 2r multiplier architecture

of Y is selected by multiplexers using m1,m2 and barrel
shifters are triggered by n1, n2; s2 decides to add or sub-
tract intermediate results to obtain partial results. These
partial products are shifted in multiples of 7 i.e.7k,where
k= {0,1,2,3,4} from LSB to form final partial products.
Then they are fed to the binary-tree summation which
gives the desired final product(X*Y).

Figure 2 uses only 12 adders/subtractors to get multi-
plier operation.This architecture not only uses less number
of operations but also very quick to produce final product
i.e (X*Y). By replacing traditional multiplier with radix
2r multiplier optimizes area and increases the performance
of PFFDP unit as shown in Fig.1.

3.1. PFFDP using Radix-2r Floating-point Multiplication
Algorithm

1. Both multiplicand and multiplier should be in IEEE-
754 format, either in single precision represents(1 8 23)
or double precision represents (1 11 52). Where the rep-
resentation defines (sign bit exponent bits mantissa bits).

2. Biasing Operation: Subtract Bias value from expo-
nent value, i.e bias value 27 − 1 = 127 in single precision
and 210 − 1 = 1023 in double precision operations.

3. Concatenate operation: Concatenating single and
double precision operations with ‘1’ results in 24-bit and
53-bit representations respectively. They are represented
as {1 & 23-bit mantissa} and {1 & 52-bit mantissa}.

4. Performing radix-2r multiplication operation: Fig.2
is used to perform this operation. We use four 7-bit win-
dows and seven 7-bit windows to represent 24-bit and
53-bit concatenated mantissa representations respectively
i.e.{ 3’d0 &4} 7 7 7}; {{3’d0 &4} 7 7 7 7 7 7 7}.

5. Exponent compare operations: Alignment for the
resultant partial products will be done. This refers to the
amount of zero padding and shift operations.

6. Perform compression technique by using carry save
adder for internal addition.

Figure 2a: Conventional Accumulator

Figure 2b: 2-stage PFCF Accumulator

7. Normalization and rounding use LZA and leading
zero detect(LZD): It also detects catastrophic cancellation
by using OR logic.

8. Sign Operation: Perform XOR operation on sign
bits.

9. The final output is concatenation of 1-bit from sign
logic, 8-bits from exponent adjuster and final 23-bits are
from rounding & post normalize unit results in desired
floating-point fused dot product operation.

3.2. Pipeline Feedfarword Cutset Free(PFCF) Accumula-
tor

Pipelined conventional accumulator of N-bit given in
Fig.2a needs (N+1)*(M-1) additional flip flops for M stage
operations. This additional flip-flops count significantly
increases as number of pipeline stages increases. In order
to reduce usage of additional flip flops we use feedforward
cutset free(FCF)[16] concept that uses only one flip flop
between two stages as shown in Fig.2b. For m-pipeline
stages, FCF needs only m-1 additional flip flops. Compar-
ison between pipelined conventional adder & PFCF adder
is given in Fig.2c. The conventional sum output takes two
clock cycles after the inputs are stored in the X. The PFCF
produces output with only one clock cycle delay. The gen-
erated carry bit of lower 16-bit data is placed between

Copyright c©Authors 785 ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

Figure 2c: 2-stage Pipelined conventional and PFCF operations

lower & higher 16-bit representation. The carry generated
by lower 16-bits is involved in the higher 16-bit operation
only after one clock cycle as in cycles 3 & 4. This op-
eration takes only one flip-flop to store & process carry
bit. However conventional operation takes N+1 flip-flops
to hold and process the data & carry bit as shown in cycles
4,5. This requires huge flip-flop array to process the entire
operation in one clock cycle. However, both accumulators
produce same final output in cycle 5 only.

Ripple carry adders have highest critical path delay
that leads to slower operations. An alternative to reduce
critical path delay is by replacing with carry look ahead
adder (CLA). But, The carry prediction logic adder sig-
nificantly increase area and power consumption. However,
usage of PFCF logic accumulator removes this drawback
in CLA adders. Replacing adder in Fig.1 & binary tree
summation in Fig.2 with PFCF-CLA adder significantly
reduces critical path delay, area and power consumption.
This enhancement in binary-tree summation block clearly
increases the performance of radix-2r multiplier architec-
ture. This in turn increases the overall performance of
PFFDP operations.

4. Performance Evaluation and Results

The system is simulated using verilog HDL simulator
and implemented using a 60nm technology library. The
operating conditions of the processor are 1.2V at 40◦C
(min) to 0.95V at 125◦C (max). This processor is excited
by 1GHz global clock with low clock slew (< 10% of the
global clock), considering good positive slack and skew.
Setting maximum clock uncertainty between 1-2%. Maxi-
mum Input and output delays are 10ns.

Area comparison of all the sub-blocks in FDP units are
shown in Table 2. The proposed design consumes 15% less
area as compare to that of Sohn’s FDP unit[18]. The major
variation in the area is observed in multiplier that is de-
signed with the help of radix-2r multiplier and addition is
designed with the help of PFCF accumulator based CLA.

Table 2: Area Break-down FDP units(Single Precision)

Design
Kim’s

[7]
Tao’s
[17]

Sohn’s
[18]

Proposed

Multiplier 16,400 16,400 16,400 14,592
Exponent
Compare

4,600 4,300 3,400 3,382

Alignment 5,200 11,200 3,600 3,512
Reduction 1,200 1,200 2,400 1,214
Addition 9,100 9,100 1,200 730

LZA &
Normalization

1,300 1,300 2,200 1,254

Rounding 1,900 1,900 1,600 1,600
Rest of

Control Logic
1,300 1,800 1,600 1,200

Total (µm2) 41,000 47,200 32,400 27,484

Table 3: Latency Break-down of FDP units(Single Precision)

Design
Kim’s

[7]
Tao’s
[17]

Sohn’s
[18]

Proposed

Multiplier 0.64 0.64 0.64 0.51
Alignment 0.96 0.82 0.40 0.42
Reduction 0.32 0.32 0.16 0.16
Addition 0.52 0.52 0.48 0.24

LZA &
Normalization

0.32 0.32 0.16 0.16

Rounding 0.34 0.34 0.42 0.42
Toal (ns) 3.10 2.96 2.26 1.91

Latency of all the sub-blocks in FDP units are tabulated
in Table 3.From the table, it is observed that radix-2r mul-
tiplier is 20% more faster than Sohn’s multiplier[18] and
PFCF accumulator based CLA adder is almost 50% faster.

Individual Comparison of area, delay & power calcula-
tions will not give exact performance of the system. Archi-
tectures occupying high area or power with low execution
time & low area or power with high execution are techni-
cally impossible to compare directly. To get equilibrium in
comparison process, area-delay-product(ADP) and power-
delay-product(PDP) parameters are used to measure the
exact performance of the overall architecture. Table 4 dis-
plays single precision and double precision operational pa-
rameters of different FDP unit architectures. The pro-
posed PFFDP architecture is compared with the referred
journal’s data to validate performance w.r.to area, latency,
total delay, ADP & PDP parameters. Area and power pa-
rameters are normalized to 60nm technology for fair com-
parison.

The proposed single precision PFFDP unit consumes
45% & 15% less area when compare to that of Lang’s dis-
crete FDP unit [19] & Sohn’s FDP unit [18] respectively.
Although the proposed PFFDP unit consumes 6% more
area when compare to that of Xing’s FDP unit [12] in sin-
gle precision implementation, it dominates Xing’s by oc-
cupies 11% less area in double precision implementation.

Copyright c©Authors 786 ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

Table 4: Comparison of IEEE-754 Single & Double Precision Floating-point FDP units

Single Precision
Lang’s [19] Sohn’s [2] Kim’s [7] Tao’s[17] Sohn’s [18] Xing’ s [12] Proposed

Norm.Area (µm2) 50,050 41,400 41,000 47,200 32,400 25,870 27,484
Latency (ns) 3.90 3.14 3.10 2.9 2.26 2.05 1.91
Total Delay (ns) 4.49 4.71 5.43 4.96 2.73 2.46 2.14
Norm.Power (mW) 54.78 44.30 43.30 49.67 32.74 2.66 2.24
ADP(µm2.ns) 224.47 194.99 222.43 234.06 88.60 63.64 58.79
PDP (mW.ns) 245.69 208.65 234.90 246.31 89.53 6.54 4.79

Double Precision
Lang’s [19] Sohn’s [2] Kim’s [7] Tao’s[17] Sohn’s [18] Xing’ s [12] Proposed

Norm. Area(µm2) 119,100 101,000 99,350 114,700 76,350 52,670 46,720
Latency (ns) 4.90 4.26 4.18 4.02 2.96 2.21 2.07
Total Delay (ns) 7.60 7.67 7.32 6.87 3.58 2.65 2.32
Norm. Power (mW) 122.17 99.7 98.07 112.58 74.42 3.94 3.67
ADP (µm2.ns) 904.56 774.47 726.75 788.47 273.46 139.68 108.32
PDP (mW.ns) 927.88 764.50 717.38 773.90 266.54 10.44 8.52

The proposed PFFDP unit’s optimized area consumption
has an upper hand on Lang’s [19] by 64%, Kim’s [7] by
43%, Toa’s [17] by 59% & Sohn’s [18] by 39%.

Xing’s FDP unit [12] consumes 12% & 7% higher power
consumption than the proposed PFFDP unit in single and
double precision implementations respectively. It also beats
rest of the FDP units with significant margin.

ADP values of the proposed unit are very impressive
and they differ by 18% & 22% with Xing’s FDP unit [12] in
single & double precision implementations. It also differs
by 34% & 60% with Sohn’s FDP unit [18] in single &
double precision implementations. The other important
parameter PDP values are also compared with Xing’s FDP
unit [12] that differs by 27% & 18% in single & double
precision implementations. Lower ADP & PDP values the
more balanced system performance. Hence, the proposed
PFFDP unit is well balanced architecture with respect to
area, power & delay aspects.

5. Conclusion and Future Scope

This paper presents implementation of PFFDP unit
that plays vital role in DSP application. Multiplier tree
in traditional FDP operation is replaced with radix-2r

multiplier that increases performance by reducing oper-
ation delay and die area. In binary tree simulator, three
stage adder operations and traditional adders are replaced
with PFCF-CLA adder that reduce additional memory el-
ements by maintaining almost same latency. This architec-
ture is powered with 1GHz clock that delivers 58.79µm2.ns,
108.32 µm2.ns ADP & 4.79mW.ns& 8.52mW.ns PDP val-
ues in single and double precision implementations. These
ADP and PDP values prove that the implemented archi-
tecture is well balanced. This PFFDP architecture can
also used in machine language algorithms for optimized
operations.

Acknowledgements

We thank our Parents, Guru & the Almighty who trusted
and supported us all the time.

References

[1] E. E. Swartzlander, H. H. M. Saleh, Fft implementation with
fused floating-point operations, IEEE Transactions on Comput-
ers 61 (2) (2012) 284–288.

[2] J. Sohn, E. E. Swartzlander, Improved architectures for a
floating-point fused dot product unit, in: 2013 IEEE 21st Sym-
posium on Computer Arithmetic, 2013, pp. 41–48.

[3] S. Yun, G. E. Sobelman, X. Zhou, A low complexity floating-
point complex multiplier with a three-term dot-product unit,
in: 2014 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), 2014, pp. 549–552.

[4] Ieee standard for floating-point arithmetic, IEEE Std 754-2019
(Revision of IEEE 754-2008) (2019) 1–84doi:10.1109/IEEESTD.
2019.8766229.

[5] H. H. Saleh, E. E. Swartzlander, A floating-point fused dot-
product unit, in: 2008 IEEE International Conference on Com-
puter Design, 2008, pp. 427–431.

[6] J. Sohn, E. E. Swartzlander, Improved architectures for a fused
floating-point add-subtract unit, IEEE Transactions on Circuits
and Systems I: Regular Papers 59 (10) (2012) 2285–2291.

[7] D. Kim, L. Kim, A floating-point unit for 4d vector inner prod-
uct with reduced latency, IEEE Transactions on Computers
58 (7) (2009) 890–901.

[8] H. Sam, A. Gupta, A generalized multibit recoding of two’s
complement binary numbers and its proof with application in
multiplier implementations, IEEE Transactions on Computers
39 (8) (1990) 1006–1015. doi:10.1109/12.57039.

[9] P. . Seidel, L. D. McFearin, D. W. Matula, Secondary radix
recodings for higher radix multipliers, IEEE Transactions on
Computers 54 (2) (2005) 111–123. doi:10.1109/TC.2005.32.

[10] A. K. Oudjida, N. Chaillet, M. L. Berrandjia, Radix-2r arith-
metic for multiplication by a constant: Further results and im-
provements, IEEE Transactions on Circuits and Systems II: Ex-
press Briefs 62 (4) (2015) 372–376. doi:10.1109/TCSII.2014.

2387620.
[11] A. K. Oudjida, N. Chaillet, Radix- 2r arithmetic for multiplica-

tion by a constant, IEEE Transactions on Circuits and Systems
II: Express Briefs 61 (5) (2014) 349–353. doi:10.1109/TCSII.

2014.2312799.

Copyright c©Authors 787 ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/12.57039
https://doi.org/10.1109/TC.2005.32
https://doi.org/10.1109/TCSII.2014.2387620
https://doi.org/10.1109/TCSII.2014.2387620
https://doi.org/10.1109/TCSII.2014.2312799
https://doi.org/10.1109/TCSII.2014.2312799

IT in Industry, Vol.9, No.2, 2021 Published Online 31-3-2021

[12] X. Wei, H. Yang, W. Li, Z. Huang, T. Yin, L. Yu, A re-
configurable 4-gs/s power-efficient floating-point fft processor
design and implementation based on single-sided binary-tree
decomposition, Integration 66 (2019) 164 – 172. doi:https:

//doi.org/10.1016/j.vlsi.2019.02.008.
[13] A. A. Wahba, H. A. H. Fahmy, Area efficient and fast combined

binary/decimal floating point fused multiply add unit, IEEE
Transactions on Computers 66 (2) (2017) 226–239.

[14] A. K. Oudjida, N. Chaillet, M. L. Berrandjia, Radix-2r arith-
metic for multiplication by a constant: Further results and im-
provements, IEEE Transactions on Circuits and Systems II: Ex-
press Briefs 62 (4) (2015) 372–376.

[15] V. S. Dimitrov, K. U. Jarvinen, J. Adikari, Area-efficient mul-
tipliers based on multiple-radix representations, IEEE Transac-
tions on Computers 60 (2) (2011) 189–201.

[16] S. Ryu, N. Park, J. Kim, Feedforward-cutset-free pipelined mul-
tiplyaccumulate unit for the machine learning accelerator, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems
27 (1) (2019) 138–146.

[17] Y. Tao, G. Deyuan, F. Xiaoya, J. Nurmi, Correctly rounded
architectures for floating-point multi-operand addition and dot-
product computation, in: 2013 IEEE 24th International Con-
ference on Application-Specific Systems, Architectures and Pro-
cessors, 2013, pp. 346–355.

[18] J. Sohn, E. E. Swartzlander, A fused floating-point four-term
dot product unit, IEEE Transactions on Circuits and Systems
I: Regular Papers 63 (3) (2016) 370–378.

[19] T. Lang, J. D. Bruguera, Floating-point fused multiply-add
with reduced latency, in: Proceedings. IEEE International Con-
ference on Computer Design: VLSI in Computers and Proces-
sors, 2002, pp. 145–150.

Copyright c©Authors 788 ISSN(Print): 2204-0595 ISSN(Online): 2203-1731

https://doi.org/https://doi.org/10.1016/j.vlsi.2019.02.008
https://doi.org/https://doi.org/10.1016/j.vlsi.2019.02.008

	Introduction
	Preliminaries
	Floating-point DOT Product(FDP) Operation
	Review of Error Analysis

	Proposed Architectures
	PFFDP using Radix-2r Floating-point Multiplication Algorithm
	Pipeline Feedfarword Cutset Free(PFCF) Accumulator

	Performance Evaluation and Results
	Conclusion and Future Scope

