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Abstract—This paper presents a new approach based on 

genetic algorithms (GAs) to generate maximal frequent itemsets 

(MFIs) from large datasets. This new algorithm, GeneticMax, is 

heuristic which mimics natural selection approaches for finding 

MFIs in an efficient way. The search strategy of this algorithm 

uses a lexicographic tree that avoids level by level searching 

which reduces the time required to mine the MFIs in a linear 

way. Our implementation of the search strategy includes bitmap 

representation of the nodes in a lexicographic tree and 

identifying frequent itemsets (FIs) from superset-subset 

relationships of nodes. This new algorithm uses the principles of 

GAs to perform global searches. The time complexity is less than 

many of the other algorithms since it uses a non-deterministic 

approach. We separate the effect of each step of this algorithm by 

experimental analysis on real datasets such as Tic-Tac-Toe, Zoo, 

and a 10000×8 dataset. Our experimental results showed that this 

approach is efficient and scalable for different sizes of itemsets. It 

accesses a major dataset to calculate a support value for fewer 

number of nodes to find the FIs even when the search space is 

very large, dramatically reducing the search time. The proposed 

algorithm shows how evolutionary method can be used on real 

datasets to find all the MFIs in an efficient way. 

Keywords—data mining; genetic algorithm; maximal frequent 

itemset; lexicographic tree 

I.  INTRODUCTION 

Mining frequent itemsets is one of the fundamental and 
essential issues in various data mining applications such as 
consumer market-basket problem, discovery of association 
rules, deducing patterns and correlations, network intrusion 
detection and other important data mining tasks. The problem 
is formulated as follows. Given a set of items and a large 
collection of transactions, each transaction is a subset of these 
items, find all frequent itemsets. The number of frequent 
itemsets is defined by a user-specified percentage value 
(support value) of the datasets. 

This problem of association rule mining includes two steps: 
first, mining frequent itemsets from a large dataset, and second, 
generating association rules or correlation among a large set of 
data items. Nowadays, huge amounts of data are collected and 
stored by industries, who are interested in mining frequent 
itemsets from large datasets. The discovery of association rules 

among a large number of business transactions helps industries 
make business decisions [1–4]. A common real life application 
is the market basket analysis, in which retailers seek to 
understand the purchase behavior of customers. The data 
analysis attempts to find interesting hidden relationships 
among products purchased by customers through association 
rule mining or frequent pattern mining. For example, by using 
frequent pattern mining, a shop manager may discover that 
butter, milk and bread are frequently purchased together by 
customers. In another example, one association rule may 
indicate that when a customer buys coffee he would also buy 
milk. Such information can then be used for cross-selling and 
up-selling, sales promotions, store design, and discount plans. 
Similarly, a video shop manager can use frequent pattern 
mining and/or association rule mining to recommend related 
videos or games when a customer has hired or bought a 
specific video or game, to attract the customer to return. Web 
administrators can use frequent pattern or association rule 
mining to understand particular collections of web pages that 
are viewed together by a group of web users. This sort of 
interesting relationship (e.g., correlation, association) among 
data items helps managers make relevant decisions [5]. 

Let D = {t1, t2, t3,…,ti,…,tn} is a dataset, where t1, t2, t3, …,tn 
are transactions. There are n transactions in total in the dataset. 
Each transaction ti contains a subset of items I = {i1, i2, 
i3,…,ik,…,im}, where i1 is item number 1, i2 is item number 2 
and so on. Transaction ti is represented as a binary vector. If 
ti[k] = 1 then it means that ti bought item ik, otherwise, ti[k] = 0. 
Let X be a subset of items in I i.e. X ⊆ I .The set ti(X) ⊆ I is 
true for all items in itemset X for transaction ti. The support 
value of an item is how many times the item appears in the 
transaction datasets as a subset. The support value of an itemset 
is denoted by δ(X) = |{t1(X) + t2(X)+ t3(X) + …+ tn-1(X) + 
tn(X)}| / |D| 

Here ti(X) gives the binary value. If the examined itemset X 
appears as a subset in a transaction ti, then ti(X) = 1, otherwise 
ti(X) = 0. An itemset with 1 item is called a 1-itemset, and an 
itemset with k-items is called a k-itemset. An itemset is called 
frequent if its support value is more than or equal to a user-
defined threshold value, which is denoted by min_supp 
(minimum support) i.e. δ(X) ≥ min_supp, where δ(X) is a 
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support value of an examined itemset. We denote the frequent 
itemsets by FI. If an itemset X is frequent, and no superset of X 
is frequent, then we can claim that X is a maximal frequent 
itemset and we denote the sets of all maximal frequent itemsets 
by MFI [6]. 

To generate the MFIs from a large dataset is time 
consuming. In this paper, we present a novel approach to 
finding MFIs from large datasets by using a GA. The length of 
an FI depends on its relationship among the itemsets. There are 
several advantages of a GA based approach that performs 
global searches. The time complexity of GA-based approach is 
significantly less than that of many other algorithms. Another 
advantage is that a GA-based approach is able to generate 
frequent itemsets from a large dataset. This work differs from 
the existing research in the following aspects:  

1. Our GeneticMax uses a lexicographic tree as a search 
tree, and it does not need to enumerate frequent 
itemsets level by level. 

2. This approach uses the principles of GA which 
randomly generates chromosomes. If a generated 
chromosome is frequent, then all the subsets of this 
chromosome are automatically pruned. If a generated 
chromosome is infrequent, then all the supersets of this 
chromosome are automatically pruned. This technique 
dramatically reduces the time for accessing a large 
datasets to calculate the support value of unnecessary 
chromosomes to find frequent itemsets. 

II. RELATED WORK 

In data mining research, frequent pattern mining is one of 
the challenging and focused areas for over a decade. A large 
number of literature and research works have been dedicated to 
this research area, and significant progress has been made 
because of these efforts. Progress has been made in sequential 
pattern mining, correlation and structured pattern mining, 
scalable and efficient algorithms are designed for mining 
frequent itemsets and so on [6]. The scope of data analysis has 
been expanded by the research of frequent pattern mining and 
have profound impact on the methodologies and applications of 
data mining for further exploration. Though there has been 
plenty of progress made in frequent pattern mining, there are 
still some challenging issues need to be resolved. These critical 
research issues include: 

Scalable mining methods, which are focused topics in 
frequent pattern mining research, have been extensively 
studied. Current mining methods are used to derive sets of 
frequent patterns. These sets of frequent patterns are too huge 
to use effectively. To reduce these huge sets, researchers have 
proposed several methods such as maximal patterns, 
representative patterns, closed patterns, condensed patterns and 
so on. But it is still undefined for a specific application which 
pattern set provides compactness and the quality of 
representation. Much investigation is needed to reduce the size 
of derived sets of patterns and to increase the quality of 
preserved patterns. 

Some applications prefer approximate frequent patterns 
though current studies show that efficient methods are 

available for mining a complete and explicit set of frequent 
patterns. In bioinformatics to match with the biological entities, 
one could be interested in searching long sequence patterns in 
DNA analysis. Much investigation is needed to design efficient 
methods to make this mining more competent than the present 
tools available in bioinformatics. 

Classification is another major task in data mining. In data 
mining, classifications using frequent patterns means which 
frequent patterns are more adequate over another. In the future, 
researcher should design a method in such a way that effective 
frequent patterns are mined directly from data [6]. 

Some applications require in depth understanding of 
patterns and interpretation of those patterns. Most of the 
researchers have focused on discovering frequent patterns but 
have given less attention to analysing and interpreting those 
patterns. The semantic analysis of a pattern includes the 
meaning of that pattern, the typical transactions that pattern 
considers and so on. Finding the reasons behind the frequency 
of a specific pattern is termed as contextual analysis of a 
frequent pattern. For example, a pattern could be frequent 
depending on specific time duration, location, weather and so 
on. To improve the interpretability, effectiveness and usability 
of a frequent pattern, it is necessary to have a deep 
understanding of frequent patterns [7]. 

It is well known that the Apriori algorithm generates a 
candidate set and tests it in a breadth fast manner. It discovers 
all the frequent itemsets at level k before moving to its next 
level (k+1). It counts the support value of each node at level k 
and prunes those nodes if the support values of those nodes do 
not satisfy a user-defined support value. It generates candidate 
itemsets at each level and scans the datasets so frequently that 
it becomes costly, especially when there exists a long pattern 
[1]. 

The Pincer-search algorithm [8] traverses a lattice through a 
bi-directional method that follows both top-down and bottom-
up approaches. To find the maximal frequent itemsets, pruning 
is applied based on the following rules: 

1. All the subsets of frequent itemsets are pruned 

2. All the supersets of infrequent itemsets are pruned. 

The breadth-first traversal strategy (a level by level search 
strategy on the search space) was used in the MaxMiner search 
algorithm. To prune the branches of a tree, MaxMiner employs 
a look-ahead method. It uses the breadth-first approach to limit 
the number of passes over the datasets but with look-ahead 
which involves superset pruning, works better for depth-first 
search methods [9].  

The DepthProject performs depth-first traversal on a 
lexicographic tree along with variations of superset pruning. To 
order child nodes, it applies dynamic reordering methods. By 
trimming infrequent items out of each node’s tail, it reduces the 
size of the search space. To eliminate non-maximal frequent 
itemsets the DepthProject would require post-pruning methods 
[10].  

MAFIA, proposed by Burdick, Calimlim, and Gehrke [11], 
extends the idea of DepthProject. Similar to the DepthProject, 
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MAFIA also uses vertical bitmap representation where the 
support value/count of an itemset is based on the bitwise AND 
operations among the itemsets. 

An example of four items in a data tuple and the datasets 
are given in Fig. 1. Bitvectors for the 1-itemset A, B, C, D of 
Fig. 1.are 10111, 01001, 11110, and 11011, respectively. To 
get the support value/count of the itemset it needs to apply 
bitwise AND (&) operation between the bitvectors of the 
itemsets. For the above example, the result of the bitwise AND 
operation of bitvectors of itemsets A and C is 10111 & 11110 
= 10110. The support value or count of an item is the number 
of 1’s in the bitvector. Here the support value of the 2-itemset 
{A, C} is 3. To bitwise AND another bitvector D with the 
previous result of the bitwise AND operation of {A, C}, is 
10110 & 11011= 10010. The support value of the 3-itemset 
{A, C, D} is 2. The search strategy of MAFIA integrates depth 
first method to traverse the tree to find maximal frequent 
itemsets along with effective pruning methodology. The look-
ahead pruning methodology, first used by MaxMiner, was also 
used by MAFIA. The last checking method of MAFIA is easy 
to test. Without counting A ∪ C, it allows us to conclude that 
{A, C} is frequent. This technique is defined as Parent 
Equivalence Pruning in [11]. 

Gouda and Zaki proposed a novel approach called 
GENMAX to find maximal itemsets in [12]. In their approach, 
they used a novel technique called Progressive Focusing. This 
technique maintains local maximal frequent itemsets (LMFI) 
which are used for making comparison with newly found 
frequent itemsets (FI). Non-maximal frequent itemsets are 
identified through this step, and it decreases the number of 
subset testing. GENMAX uses a vertical representation of a 
datasets and stores a transaction identifier set (TIS) for each 
itemset instead of a bitvector. The support value of an itemset 
is defined by the cardinality of an itemset’s TIS. Researchers of 
GENMAX concluded that through experimental results the 
algorithm performs better than existing algorithms for different 
types of datasets. 

Alataş and Akin designed an efficient genetic algorithm as 
a search strategy to mine both positive and negative 
quantitative association rules in [13]. Association rules are 
deduced from frequent patterns. Different from other methods, 
their approach is used to mine association rules without 
generating frequent itemsets. The proposed genetic algorithm 
does not depend on minimum support and confidence value 
which is hard to define for a dataset. A new genetic operator 
named uniform operator is used in this approach to ensure 
genetic diversity. 

Another interesting problem in data mining is classification. 
Different lengths of the itemsets are classified into different 
groups based on the frequencies of the itemsets. Concise 
 

A B C D 

1 0 1 1 

0 1 1 1 

1 0 1 0 

1 0 1 1 

1 1 0 1 

Fig. 1. Vertical bitmap representation. 

symbolic rules with higher accuracies are mined using neural 
networks. To get the required accuracy, the network is initially 
trained. Network pruning algorithm is used to prune redundant 
connections. Classification rules are generated through the 
result of the analysis of activation values of the hidden layers. 
Researchers noticed that the main drawback of using neural 
networks in different data mining test problems was the 
training time. Though it provides lower classification error rate 
than decision trees, it requires long training time [14, 15]. 

A quick response data mining model based on genetic 
algorithm has been designed in [16]. This approach gives more 
flexibility to the user to mine frequent itemsets. Long frequent 
itemsets are generated because of the higher relationships 
among data tuples. If the Apriori algorithm is used to mine 
frequent itemsets from these tuples, it could take a huge 
amount of time due to frequent access to the datasets and a 
large number of candidate itemsets generated. This approach 
avoids considering huge candidate itemsets. It only scans the 
datasets for those frequent itemsets that users are more 
interested. This system uses a GA to mine itemsets and then 
shows them to the user. If the users are interested, then it scans 
the datasets to get the support values of those itemsets. 

To mine quantitative association rules, a GA-based 
algorithm named QUANTMINER was proposed in [17, 18]. 
By optimizing the support and confidence values, this system 
dynamically identifies good intervals in association rules. 
Researchers applied this algorithm to different datasets and 
showed the usefulness of this algorithm as a data mining tool. 

R. J. Kuo and C. W. Shih used a new meta-heuristic 
technique, the ant colony system [19] to mine large databases 
for efficient searching of association rules. Multi-dimensional 
constraints are considered in this approach. In addition, this 
approach also considered user’s assign constraint. The results 
showed that it gave more condensed rules than the Apriori 
algorithm. The computational time of this approach is less than 
that of the Apriori algorithm. Though this system provides 
promising results, it still faces some issues that need to be 
resolved. After analysing the results, it was found that lots of 
similar rules were generated so a fuzzy approach was applied 
to merge those similar rules into one class. 

To mine association rules, most researchers focused on 
ameliorating computational efficiency. To determine the 
threshold values of support and confidence which are the key 
factors for the association rule mining task, the researchers 
proposed a new approach based on the particle swarm 
optimization technique. Suitable fitness values and their 
corresponding support and confidence values of the identified 
swarms are searched through this approach. Their result 
showed that particle swarm optimization algorithm quickly 
finds suitable threshold fitness values of itemsets and quality 
rules are obtained in this way. Users can mine specific rules 
from a large database by setting support or fitness value. Since 
this technique free from support constraint, the main problem 
with this approach is users have no control over mining 
techniques. Apart from this their result only showed two or 
three-dimensional rules instead of more dimensional rules that 
could be interesting for the policy makers of the industry [20]. 
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III. THE IDEA OF FAST RESPONSE 

If the data tuples contain long itemsets, huge candidate 
itemsets will be generated, and that reduces the efficiency of a 
solution. A long itemset enumerates a combinatorial number of 
shorter, frequent sub-itemsets. For example, a data tuple 

contains 50 itemsets, {i1, i2, i3, … ,i50}, enumerates (50
1

) 

frequent 1-itemsets (i1, i2, … ,i50), (
50
2

) frequent 2-itemsets: (i1, 

i2), (i1, i3), … , (i1, i50), (i2, i3), (i2, i4), … ,(i2, i50), and so on. 

Lemma 1: If the length of an itemset is n, then it enumerates 
2n-1 frequent sub-itemsets. 

This can become too huge for a computer to compute and 
store if the length of an itemset is long. For each sub-itemset, 
the Apriori algorithm is used to scan the datasets and calculate 
the support value of that itemset. However, the Apriori 
algorithm increases the computational time of the algorithm 
and decreases the efficiency of it. To overcome this low 
efficiency of the Apriori algorithm we introduce a new 
approach that takes into consideration the superset-subset 
relationships. An itemset I is called maximal frequent itemset if 

the super itemset of I, denoted by 𝐈́, is not frequent such that 

𝐈 ⊆ 𝐈́. Here 𝐈́ is an infrequent itemset based on a user-defined 
support value. 

Lemma 2: If an itemset I is a frequent itemset, then all the 
subsets of I are frequent, based on the user-defined support 
value. 

For example, if an itemset I = {1,2,3} in set S = {1,2,3,4} is 
frequent, i.e., δ(I) ≥ min_supp then all the subsets of I, i.e.,{1}, 
{2}, {3},{1,2}, {1,3}, {2,3} are frequent itemsets, based on the 
support value defined by the user. The Apriori algorithm scans 
the datasets for all the subsets of X to get the support value. It 
takes huge computational time if the length of an itemset is 
long. In our GeneticMax approach, if the generated 
chromosome is I = {1,2,3}, and it satisfies the user-defined 
support value then it will not test all the subsets of which 
dramatically reduces the computational time for scanning the 
datasets. 

IV. PRELIMINARIES 

In this section, we will introduce some notations and 
conceptual diagrams that will be used throughout this paper. 
Initially, we describe datasets through bitmap and bipartite 
graphs. Then we graphically represent subsets of items using 
lexicographic trees. 

A. Bipartite Graph and Bitmap Representation  

If U and V are two disjoint sets of vertices and E is the set 
of edges which connect the vertices U and V, then we can 
represent a bipartite graph as a triple, i.e. G = (U, V, E) where 
E ⊆ U×V. 

In a binary matrix, all elements are either 0 or 1. The 
mapping between binary matrices and datasets of transactions 
is straight forward. Consider a dataset D which consists of m 
transactions, {t1, t2, …, tm-1, tm}, corresponding to rows; and n 

items, {i1, i2, …, in-1, in}, corresponding to columns. The 
datasets D is an m×n matrix, where each entry is defined as aij. 
The value of aij is 1 if transaction ti contains item ij; otherwise, 
 

                    𝑖1            𝑖2           𝑖3            𝑖4  
  

 

 

  

            𝑡1           𝑡2           𝑡3           𝑡4             𝑡5 

 

Fig. 2. Bipartite graph representation of the dataset D. 

 i1 i2 i3 i4 

t1 1 1 1 0 

t2 1 1 1 1 

t3 1 0 1 1 

t4 1 0 1 1 

t5 1 1 1 1 

Fig. 3. Binary matrix representation of the dataset D. 

it is 0. Now we are mapping each transaction as a set of items 
from the binary matrices. For example, a dataset D which 
consists of the following transactions t1, t2, t3, t4, t5 and items i1, 
i2, i3, i4 where t1 = {i1, i2, i3}, t2 = {i1, i2, i3, i4}, t3 = {i1, i3, i4}  
and t5 = {i1, i2, i3, i4}. Here all the items are different. Fig. 2. 
and Fig. 3. show the bipartite graph and the binary matrix of 
the dataset D. 

From Fig. 2, if we map each transaction by items then the 
transactions are as follows: 

t1 = {1, 1, 1, 0} = 1110 

t2 = {1, 1, 1, 1} = 1111 

t3 = {1, 0, 1, 1} = 1011 

t4 = {1, 0, 1, 1} = 1011 

t5 = {1, 1, 1, 1} = 1111 

B. Lexicographic Tree  

Our research problem here is to find the maximal frequent 
itemsets from large datasets using a GA. Itemset I consists of n 
items, i.e. I = {i1, i2, i3, … ,in}. Xk represents an itemset 
containing k-items, where k = 1, 2, …, n and Xk ⊆ I. If k = 1, 
then Xk contains a 1-itemset, i.e. Xk = {i1}. If k = 2, then Xk 
contains a 2-itemset, i.e. Xk = {i3, i4}, and so on. An itemset is 
called frequent if its support value satisfies a user-defined 
support value, and is denoted by FI. An itemset X is called 
maximal frequent itemset if it is frequent, and no superset of X 
satisfies any user defined support value, and is denoted by 
MFI. 

In this paper, we will consider the search space that 
includes all feasible solutions. A lexicographic tree [11, 21] is 
the search space for GeneticMax. A lexicographic tree 
maintains lexicographic ordering of items of I in a datasets D. 
If item i occurs before item j in a datasets D, then it maintains 
lexicographic ordering, i.e. 𝑖 ≤𝐿 𝑗. If two subsets S1 and S2, 
where S1 ⊆ S2 and S1, S2 ⊆ S then it maintains the following 
lexicographic order: S1 ≤𝐿 S2. There is no lexicographic 
ordering relationship between the two subsets S1 and S2, If S1 
and S2 are disjoint subsets. 



IT in Industry, vol. 3, no. 3, 2015  Published online 15-Oct-2015 

 

Copyright  ISSN (Print): 2204-0595 

© Kabir, Xu, Kang, and Zhao, 2015 68 ISSN (Online): 2203-1731 

 

 

Fig. 4. Lexicographic tree of four items. 

 

Fig. 5. Lexicographic tree of four items based on a user-defined support 

value. 

Fig. 4 shows an example of a lexicographic tree that 
considers lexicographic ordering for four items. The root of the 
tree is an empty set and each k-level contains k-items. In each 
level, k-itemsets maintain lexicographic ordering with the tail 
nodes containing items lexicographically larger than elements 
of the head node. The support value of the head node is more 
than that of the tail node. It can be seen that the nodes closer to 
the root are more frequent than those far from the root. There is 
a non-linear line (called a cut) in the tree which separates 
frequent itemsets from infrequent ones. The nodes that are 
above the cut are frequent itemsets and the elements below this 
cut are infrequent ones. 

For GeneticMax, we introduce a new tree based on user-
defined support values. The line is defined by a user-defined 
support value and the area above the line is referred to as 
positive area and below negative area. All the nodes in the 
positive area are frequent whereas those in the negative area 
are infrequent. In Fig. 5, the nodes within the positive boundary 
area have a minimum support value of 30%. GeneticMax 
introduces an array to store the frequent itemsets (called FIs). 
Among the frequent itemsets, the set containing the largest 
number of items is called the maximal frequent itemset. This 
maximal frequent itemset (stored in another special array) is 
called MFI. This algorithm searches frequent nodes within a 
positive area and tries to converge to a solution, i.e., finding 
maximal frequent itemsets as early as possible. Fig. 5 verifies 
Lemma 1, where there are 4 items, and it enumerates (24-1) = 
15 nodes including the root node. With Apriori algorithm, one 
would test all the nodes at a specific level and generate a 
candidate set. This candidate set generation needs a long time 
for finding maximal frequent itemsets. For example, in Fig. 5 it 
tests the itemsets {1}, {2}, {3}, {4} in level 0 and find that all 
the itemsets are frequent since these nodes meet the minimum 
support value. Then it goes to the next level to scan the datasets 
to get the support values of {1, 2}, {1, 3}, {1, 4}, {2, 3},{2, 4}, 

{3, 4} and so on. On the next level, it prunes the itemsets {1, 
4}, {2, 4}, {3, 4} since these nodes have support values that are 
less than the user-defined support value. On the other hand, 
unlike apriori algorithm, with GeneticMax we do not need to 
test all the nodes, which saves a huge amount of time even 
when the datasets is very large. For the current example, if the 
initially generated itemset is {1, 2, 3} then it scans the datasets 
and calculates the support value. If the support value of the 
generated itemset {1, 2, 3} is ≥ 30%, then it stores this itemset 

in a frequent itemset array called FI_Superset_Member. 
In the future it will not scan the datasets for {1}, {2}, {3}, {1, 
2}, and {1, 3} since these itemsets are the subsets of the 
previously generated itemset {1, 2, 3}. If the generated itemsets 
are {1}, {2}, {3} or {1, 2} then it always checks the array 

FI_Superset_Member. If it finds any superset in 

FI_Superset_Member, GeneticMax will discard theses 
subsets, which substantially reduces the time for scanning the 
datasets to calculate the support values correspondingly.  

Lemma 3: If Y is a superset of an itemset X, i.e., X ⊆ Y and if 
Y is a frequent itemset, then it can be claimed that X is a 
frequent itemset. 

For example, {1, 2, 3} is a superset of itemset {1}, {2}, 
{3}, {1, 2} and {1, 3}. GeneticMax uses the principles of GA 
and follows the global search mechanism; therefore, a superset 
could be generated before generating a subset. In this example, 
if {1, 2, 3} is generated before its subsets (and stored in the 

array FI_Superset_Member), then all other generated 
subsets will be discarded. 

Lemma 4: If Y is a superset of an itemset X, i.e., X ⊆ Y, and if 
X is an infrequent itemset, then it can be claimed that Y is an 
infrequent itemset. 

For example, if the initially generated chromosome is 
{1, 4}, and the support value of this itemset is < 30%, then it is 

stored in a non-frequent itemset array called NFI. If the next 

generated itemset is {1, 3, 4}, the algorithm will check the NFI 
array, and if it finds any subset in this array, GeneticMax will 
discard itemset {1, 3, 4} for any future calculations. 

Lemma 5: If Z is a superset of an itemset X, Y, i.e., X, Y ⊆ Z 
and if Z is an infrequent itemset, then we cannot determine 
whether X or Y is an infrequent itemset. 

Lemma 5 is slightly different from Lemma 3. With the 
previous example, if {1, 2, 3} is a frequent itemset then all of 
its subsets must be frequent, i.e., {1},{2},{3},{1,2},{1,3}, 
{2,3} are all frequent itemsets. But if {1, 2, 3} is an infrequent 
itemset then we cannot conclude that all of its subset are 
infrequent. In the above Fig. 5, {1, 4} is an infrequent itemset 
but its subsets {1} and {4} are frequent itemsets. 

Lemma 6: If Z is a subset of itemsets X and Y, i.e. Z ⊆ X, Z ⊆ 
Y; and if Z is a frequent itemset, then its supersets X and Y 
could be either frequent or infrequent itemsets. 

For example, itemset {1} in Fig. 5 is frequent. Although its 
superset {1, 3} is frequent, its superset {1, 4} is an infrequent 
itemset. 

The main idea of GeneticMax is to find maximal frequent 
itemsets while converging to a solution as fast as possible. It 

Level 
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sub-divides a whole lexicographic tree into two sub-areas 
based on a user-defined support value. GeneticMax can 
generate any chromosome in any sub-region. If it finds any 
superset in a positive boundary area, then it follows Lemma 3 
and prunes all of its subsets. But if it finds any subset in a 
negative boundary area, then it follows Lemma 4 and prunes 
all of its supersets.  

The main advantage of GeneticMax is its ability to 
converge quickly to a solution, and find all the supersets in a 
positive boundary area closer to the cut as fast as possible. In 
the above example, if {1, 2, 3} is generated before all of its 
subsets ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}) and found to be a 
frequent itemset, then it will discard those subsets (which are 
also frequent itemsets). If the next generated itemset is  

{1, 3, 4} it will check the NFI_Subset_Member array and 
does not find any subset there. GeneticMax will scan the 
datasets for this itemset to find its support value and store it in 

NFI. In the future, all the supersets of {1, 3, 4} will be 
discarded. 

V. DESCRIPTION OF GENETICMAX 

A. Itemsets Mapping to Chromosomes 

GeneticMax maps itemsets onto a chromosome code. Each 
node in the lexicographic tree represents different itemsets and 
all the nodes in the tree get a unique chromosome code. The 
main features of chromosome coding: 

1. It is easy to calculate the support values since 
GeneticMax uses bitmap representation of the datasets. 

2. Generate all the possible nodes. If there are n items, it 
enumerates (2n-1) itemsets or nodes in the 
lexicographic tree. If it needs, GeneticMax can 
generate (2n-1) nodes in its lifetime.  

The length of a chromosome is fixed. If a dataset contains n 
items, then the length of all the generated chromosomes are 
always n, as shown in Fig. 6.  

B. Lifetime of GeneticMax 

The lifetime of GeneticMax depends on user’s selection of 
a generation. The higher the generation number, the higher the 
probability for getting a correct solution. But there is a 
threshold value for a generation: after the threshold is reached 
the solution remains the same. 

VI. GENETICMAX FOR EFFICIENT MFI MINING 

There are five main requirements in developing an efficient 
maximal frequent itemsets mining algorithm. We need a set of 
techniques that fulfill these requirements: 

1. It will not scan a dataset more than once for a specific 
itemset. 

2. If X is an itemset in a positive boundary area, and there 
are no supersets of X and it has already been tested, 
then all the subsets of X are pruned and defined as 
invalid datasets. 

3. If X is an itemset in a negative boundary area, and 
there are no subsets of X and it has already been tested,  
 

𝑉𝑖𝑡𝑒𝑚1
 𝑉𝑖𝑡𝑒𝑚2

 … 𝑉𝑖𝑡𝑒𝑚𝑛
 

Fig. 6. Mapping items onto chromosomes 𝑉𝑖𝑡𝑒𝑚1…𝑛
∈ [0,1]. 

 

Fig. 7. The number of generations and maximal frequent itemsets. 

then all the supersets of X are pruned and defined as 
invalid datasets. 

4. It should maintain an interactive mining process, where 
users can change the threshold to get different sets of 
MFI. 

5. It gives correct solutions for different sizes of datasets. 

Apriori algorithm and FP-Tree do not satisfy requirements 
1, 2, 3 and 4 respectively. GeneticMax fulfills all the above 
requirements. 

Genetic Algorithms, developed by Holland in 1975, are 
random search algorithms that generate populations iteratively 
[22]. This algorithm has been used to find approximate 
solutions for further optimization. A GA is a search heuristic, 
considers adaptive methods that are used to solve search as 
well as optimization problems. This algorithm is inspired by 
natural selection and the “survival of the fittest” mechanisms 
which were clearly stated by Charles Darwin in his book “The 
Origin of Species”. The main concept of “survival of the 
fittest” mechanism is based on the fitness value; only the 
stronger individuals will survive in a competitive environment. 
A GA simulates the processes in natural population which are 
essential for evolution. A large number of researchers worked 
on GAs [23–26]. Naturally, individuals are competing for their 
food, shelter, water, clothes and so on. Even members of the 
same class often compete to attract partners. Those individuals 
are referred to as strong if they are successful in surviving and 
attracting a partner. A large number of offspring will be 
produced by strong individuals. On the other hand poorly 
performing individuals are referred to as weak and have less 
probability to produce newer offspring. “Superfit” offspring 
can be produced by the combination of good attributes from 
different parents. That is the fitness of this offspring is higher 
than the fitness of the parents. In this fashion, species 
becoming more and more well suited in the present 
environment.  
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GA plays a vital role in this study. Evolutionary algorithm 
based techniques are robust and can be used to solve a wide 
range of problems including those which can be difficult to 
solve by other methods. It is well known that GA cannot 
guarantee optimum solutions to any problem but rather it can 
find “acceptably good” solutions to a problem “quickly”. 
Existing methods that are working well as a solution for a 
particular problem, improvement of those methods can be done 
by hybridizing with GA. 

A traditional GA generates an initial population and then 
computes the fitness value of that population. Two individuals 
are selected from the old generation and crossover and 
mutation operators are applied to produce two offsprings. 
Survivors who have the best fitness values are inserted in the 
new generation. If the population is converged to a solution, 
then the algorithm is terminated. In this algorithm, fitness 
function provides the fitness value of an offspring which is a 
specification of the offspring. 

The main aim of using a GA for this problem is to reach 
good results by discarding bad solutions during generation of 
populations [27]. The basic steps of GeneticMax algorithm are 
as follows: 

A. Procedures of GeneticMax 

There are eight steps in the GeneticMax algorithm. They 
are listed as follows: 

1. Set number of generations. 

2. Generate a population. 

3. Check the FI_Superset_Member and 

NFI_Subset_Member array for superset and subset 
checking of this generated chromosome. 

4. If it finds any superset in FI_Superset_Member, 

or subset in NFI_Subset_Member, then go to Step 

2. 

5. Compute a fitness value of individuals according to 
their support values in dataset D. 

6. Perform FI_Member_Add, and if any frequent item 

sets are found then update FI_Superset_Member. 

7. Perform NFI_Member_Add, and if any infrequent 
itemsets are found then update 

NFI_Subset_Member. 

8. Go to Step 3 with newly generated chromosome until it 
exceeds the generation number set in Step 1. 

B. Mining the Superset in a Positive Boundary Area 

For an itemset X, if there is any subset of X in 
FI_Superset_Member, then this method (Fig. 8) is called to 
replace that subset by its superset X. This method is also 
applicable if X is a new frequent item with no subset in 
FI_Superset_Member. 

C. Mining the Subset in Negative Boundary Area 

For an itemset X, if there is any superset of X in 
NFI_Subset_Member, then this method (Fig. 9) is called to 

replace that superset by its subset X. This method is also 
applicable if X is a new infrequent item, and it has no superset 
in NFI_Subset_Member. 

D. GeneticMax Pruning Methods 

The Check_Member_for_Item function (Fig. 10) 
incorporates three techniques: 

1) Superset Checking Techniques 
Checking to see whether a given chromosome is a superset 

in a positive boundary area. Further pruning happens if a given 
itemset is not a superset in the positive boundary area. 

2) Subset Checking Techniques 
Checking to see whether a given chromosome is a subset in 

a negative boundary area. Further pruning happens if a given 
itemset is not a subset in the negative boundary area. 

3) Unchecked itemset checking techniques 
If an itemset is neither a superset in a positive boundary 

area and nor a subset in a negative boundary area, then this 
itemset is referred to as an “unchecked” itemset and needs to be 
tested. For this unchecked itemset, GeneticMax scans the 

datasets and sets the itemset in FI_Superset_Member or 

NFI_Subset_Member according to the user-defined support 
value.  

//Invocation: FI_Member_Add(IF I_Superset_Member) 

1. If any subset of IF is in I_Superset_Member 

2. Delete the Subset of IF 

3. Add IF in FI_Superset_Member 

4. Else add IF in FI_Superset_Member 

Fig. 8. The FI_Member_Add function. 

//Invocation: NFI_Member_Add(I1F NFI_Subset_Member) 

1. If any superset of I1F is in NFI_Subset_Member 

2. Delete the Superset of I1F  

3. Add I1F in NFI_Subset_Member 

4. Else add I1F in NFI_Subset_Member 

Fig. 9. The NFI_Member_Add function. 

//Invocation: Check_Member_for_Item (I, 

FI_Superset_Member  NFI_Subset_Member) 

1. If any superset of I is in FI_Superset_Member 

2. Discard I 

3. Else if any subset of I is in 

NFI_Subset_Member 

4. Discard I 

5. Else scan the database to calculate support 

value for I 

6. If support value ≥ user-defined support 

value 

7. Invoke FI_Member_Add 

8. Else invoke NFI_Member_Add 

Fig. 10. The Check_Member_for_Item function. 
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VII. EXPERIMENTAL RESULTS 

The experiments were performed on an Intel(R) Core i5-
3210M CPU @2.50GHz, with 4 GB of RAM running on 
Windows 7 Enterprise. Microsoft Visual Studio 2012 was used 
to compile the code of GeneticMax. Three datasets including 
Tic Tac Toe, 10000×8, and Zoo were used to test GeneticMax. 
Different support values were applied to these datasets to check 
how many nodes have been tested and the numbers of 
chromosomes have been generated to get the exact number of 
maximal frequent itemsets, run times, and so on. Here run time 
is the total execution time. GeneticMax embeds two main 
features: i) superset-subset relationship in both positive and 
negative boundaries in a lexicographic tree for pruning invalid 
chromosomes, and ii) use of GA which uses a global search 
mechanism. The purpose of this new approach is to achieve 
convergence to a solution as fast as possible. A full experiment 
of GeneticMax on these datasets was conducted, demonstrating 
GenticMax’s ability to yield solutions rapidly by accessing the 
datasets for a few number of nodes in a lexicographic tree. 

As we see from the previous discussions, the Apriori 
algorithm tests all of the nodes in each level and prunes those 
nodes that do not satisfy a minimum support value. In 
GeneticMax, if it generates a chromosome X in any level that 
satisfies a minimum support value, then all the other subsets of 
X in any level will be automatically pruned. This approach 
dramatically reduces the time for accessing a large dataset. 
This is also true the other way around. If GeneticMax generates 
a chromosome Y in any level that does not satisfy a minimum 
support value, then all the other supersets of Y in any level will 
be automatically pruned. 

We tested the algorithm on different datasets such as Tic-
Tac-Toe, Zoo, 10000×8 and so on. These datasets were taken 
from the University of California, Irvine (UCI) machine 
learning repository (http://archive.ics.uci.edu/ml/datasets.html). 
From the experimental results as shown in Table 1, we can see 
that if the number of generations is increased, then it increases 
the frequent itemsets. For example, for the 10000×8 datasets, 
generation 100 produced 9 frequent itemsets whereas 
generation 140 produced 8 frequent itemsets. In other words, 
generation 100 resulted in more than 9 frequent itemsets. On 
the other hand, generation 140 resulted in more than 8 frequent 
itemsets. If we compare these two generations, we could 
conclude that generation 100 still did not find some frequent 
itemsets. When we increased the number of generation to 140, 
it found some itemsets missed by generation 100. Generation 
150 gave the same result as generation 140. So users can use 
generation 140 as a threshold value for the 10000×8 datasets. 
This is also true for Tic-Tac-Toe, generation 1200 and 1300 
gave the same result that contains the maximal frequent 
itemsets. So for Tic-Tac-Toe, generation 1200 can be used as a 
threshold value.  

Table 2 shows a comparison between the number of nodes 
in a lexicographic tree and the number of nodes tested for 
getting maximal frequent itemsets. For 10000×8, there are 255 
itemsets and GeneticMax accessed only 39 itemsets in the main 
datasets to get the maximal frequent itemsets. Since 
GeneticMax uses the principles of genetic algorithm and 
prunes invalid chromosomes based on superset-subset 

relationship, it dramatically reduces the number of itemsets out 
of a dataset for getting the support value to mine maximal 
frequent itemsets. The advantage of using those principles in 
GeneticMax is showed in Table 2, where (255-39) = 216 nodes 
were not examined to get the support value from datasets 
10000×8 to get the exact number of maximal frequent itemsets. 
Only 39 were examined to get the final solution. For 
TicTacToe, only 114 nodes were examined to get the final 
solution (the other 397 nodes were not required). 

As we can see from Fig. 11, the runtime of GeneticMax 
increases with respect to the generation number of 
chromosomes. A lower support value that generates more 
frequent itemsets needs higher runtime whereas a higher 
support value that generate fewer frequent itemsets needs less 
computational time, as shown in Fig. 12. 

VIII. CONCLUSION AND SUMMARY 

In this paper, we proposed a new GA-based approach 
GeneticMax to mine maximal frequent itemsets in an efficient 
way. We have conducted thorough experiments on different 
real datasets. The experimental results demonstrated several 
advantages of our algorithm.  

 It accesses a large datasets for a fewer number of nodes 
to calculate the support value to find maximal frequent 
itemsets. 

 It shows the power of using an evolutionary algorithm 
for generating frequent itemsets from a lexicographic 
tree. The whole dataset is projected onto a 
lexicographic tree based on a user-defined support 
value. 

 

Fig. 11. Run time versus generation for Tic-Tac-Toe. 

 

Fig. 12. Run time of GeneticMax using different support values. 
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TABLE I.  THE EXPERIMENTAL RESULTS OF GENETICMAX FOR TWO DIFFERENT DATASETS  

Database Records Items Support (%) Generation 
Frequent 

Itemsets 
Time (s) Remarks 

10000×8 10000 8 20 

100 9 10.22  

140 8 21.67 
This generation 

contains MFI 

150 8 25.10  

TicTacToe 958 9 16 

100 6 10.13  

250 7 17.53  

500 10 43.83  

1100 23 78.20  

1200 24 95.60 Both Generations 
provide the same 

result 
1300 24 115.66 

 

TABLE II.  RESULTS SHOWING THE NUMBER OF TIMES THE DATABASE ACCESSED BY GENETICMAX 

 

 

 

 

 

 

 

 The experimental analysis of GeneticMax shows the 
effect of generations of chromosomes and pruning all 
the subsets and supersets in both positive and negative 
boundary areas, which dramatically reduces search 
space and cost of counting support value of itemsets. 

 The above advantages of GeneticMax increase the 
scalability of this algorithm. 

We have implemented the GeneticMax algorithm and 
studied its performance. The performance study showed that 
this algorithm mines different sizes of patterns in real datasets 
in an efficient way and performs better than other candidate 
pattern generation and evolutionary based algorithms. 
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