

932

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

A NOVEL MULTI GRANULARITY LOCKING

SCHEME BASED ON CONCURRENT MULTI -

VERSION HIERARCHICAL STRUCTURE

Ms. Swati1, Dr Shalini Bhaskar Bajaj2, Dr Vivek Jaglan3
1Research Scholar, CSE Department, Amity University Haryana, Gurgaon, India

 2Professor, CSE Department, Amity University Haryana, Gurgaon, India
3Professor and Dean Research, CSE Department, Graphic Era Hill University, Dehradun, India

Email: swattiguptta@gmail.com, sbbajaj@ggn.amity.edu, jaglanvivek@gmail.com

Abstract: We present an efficient locking scheme

in a hierarchical data structure. The existing multi-

granularity locking mechanism works on two

extremes: fine-grained locking through which

concurrency is being maximized, and coarse grained

locking that is being applied to minimize the locking

cost. Between the two extremes, there lies several pare

to-optimal options that provide a trade-off between the

concurrency that can be attained. In this work, we

present a locking technique, Collaborative Granular

Version Locking (CGVL) which selects an optimal

locking combination to serve locking requests in a

hierarchical structure. In CGVL a series of version is

being maintained at each granular level which allows

the simultaneous execution of read and write operation

on the data item. Our study reveals that in order to

achieve optimal performance the lock manager

explore various locking options by converting certain

non-supporting locking modes into supporting locking

modes thereby improving the existing compatibility

matrix of multiple granularity locking protocol. Our

claim is being quantitatively validated by using a Java

Sun JDK environment, which shows that our CGVL

perform better compared to the state-of-the-art

existing MGL methods. In particular, CGVL attains

20% reduction in execution time for the locking

operation that are being carried out by considering,

the following parameters: i) The number of threads ii)

The number of locked object iii) The duration of

critical section (CPU Cycles) which significantly

supports the achievement of enhanced concurrency in

terms of the number of concurrent read accesses.

Keywords: Hierarchical structure, Scalability,

Concurrently, Synchronization, Performance.

I. Introduction
Synchronization mechanism is a fundamental

building blocks for designing applications that are

being run concurrently .The applications such as

storage system [1], operating system [2, 3, 4, 5],

network system [6, 7] and database system [8]

completely rely on these synchronization mechanism

which plays an integral role in tuning their

performances [9].A commonly used mechanism for

obtaining synchronization mechanism in the

database domain [10] is locking. The locking

mechanism ensures that each data item is controlled

by a single thread of control, each time available to

whosoever holds the lock. This is turn guarantees

data integrity, by not allowing conflicting locks to

take place together[10].The different implementation

exist depending on various factors such as the way

the lock request is granted and released, as well as the

granularity of the data item[10].

In order to support locking operation at different

hierarchical structure Multiple Granularity Locking

(MGL) scheme was introduced which poses

scalability challenges for both coarse grain and fine

grain [11].This hierarchical locking thereby involves

the following schemes: shared lock, exclusive lock

and intension exclusive lock. The presence of

intension locks provides notification to other

transactions thereby reduces the cost of finding the

entire element for performing locking operations.

Even though MGL effectively gains serializability it

still fails to achieve higher concurrency due to

pseudo-conflicts [32] that exist among multiple

transactions.

With the view to reduce the traversal cost for

MGL locking, there have being several attempts

made by [11, 12, 30] which quickly checks for

overlaps regions. Most of the work is concentrated

only on the parameter of reducing the traversal cost.

Unfortunately the scheme does not focus on

achieving higher concurrency among multiple

transactions that perform data access operations in

hierarchical structure.

In order to support enhanced concurrency

without any phantom avoidance we proposed

Collaborative Granular Version Locking(CGVL)

scheme which is an extension of the MGL

framework that supports multiple versions of the data

items that support better scalability in terms of

throughput. In case of read-write conflicts (IS-X,IX-

S,S-SIX,S-X) mode unlike MGL,CGVL avoids

synchronous waiting for data item reclamation by

providing suitable version for each data item[31].It

works on timestamp ordering principle to provide a

consistent snapshot of each data item. Each

933

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

requesting thread selects the suitable version of the

data item by using the last committed timestamp of

each version(when the version was committed).This

is well known approach that exist in multi version

control database scheme [14-18] that provide

multiple version for each transactional operations to

perform their work.

However, it is difficult to design a scalable

synchronized framework that is based on MVCC

concepts which include the following 1) a global

timestamp allocation scheme 2) An efficient garbage

collection scheme.

In particular the work comprises of following

contributions.

• The scalability issues has being

explored with the proposed locking

mechanism that shows consistent

performance in a hierarchical data

structures.

• It offers maximum degree of

concurrency by supporting

simultaneous execution of read-write

operations which is not possible in the

existing MGL locking protocols.

The proposed CGVL algorithm have being

evaluated against existing intention-lock-based

locking mechanism and we have study their relative

performances. The study presents scenarios under

which CGVL outperform existing intension locking

protocol. The results were obtained by using Java

Sun JDK platform that shows significant

performance in the system.

The organization of the paper is as follows: In

Section 2 literature review is being covered that

comprises of existing locking approaches and their

associated pros-cons. In Section 3 Phases of CGVL

algorithm is being discussed. Section 4 quantitatively

evaluate the effectiveness of CGVL and compare its

performance with the existing intension based

locking protocol. Section 5 provides conclusion.

II. Related Work
Some of the important work carried out in the field of multiple granularity and multi version locking protocols

are discussed in table 1.
Table 1: Literature Review

Locking Technique Approach Pros Cons

Multiple

Granularity(MGL)

Dom lock[11] The number of nodes being locked is being

reduced. Thereby, graph traversal cost is being
reduced by selecting an arbitrary dominator in

the hierarchical tree structure.

It does not support

concurrency as the number of
nodes being locked is being

reduced.

Numlock[12] In order to serve any MGL request it selects a
locking combination which is optimal by using

a greedy algorithm. It lies on the concept of

interval locking to generate a subset for the
given locking option. That generate a subset of

the pare to-optimal options

Concurrency does not
increases as it is completely

dependent on efficient thread

synchronization.

Hi-fi lock[30] In order to quickly checks the overlap region a

novel indexing technique is being used. It
quickly checks the overlap between two threads

requested in a hierarchy.

It is best suited when the

number of transactions are
less.

Fine grained Locking[32] It considered objects as lowest level of
granularity by creating an object graph which is

used to create the parallel procedures.

The memory overhead of the
locks is being increased.

Automatic Lock

Placement Policy[19,20]

A system that is being used for carrying out the

lock placements is being used. A mapping
function is generated between the lock and the

data item that guards multiple nodes.

Increase in Concurrency is not

taken into account.

Concurrent multi way
tree algorithm[21]

In order to represent concurrent left-child right-
sibling tree Packed Objects are being used to

represent the ordering relationship.

It does not reduces the
overhead of recursive tree

traversal

Multiversion-Gist[22] It proposed a concurrent index structure based

on MVCC and the Gist which provides long-
lasting read sessions.

It has increased memory

consumption

Multi-Version read-log-

update (MV-RLU)
[23]

In the case of any update conflict, the MV-RLU

avoids the waiting condition for an object
reclamation by providing them the existing

versions of a given object.

Increased Memory

consumption

Starvation Freedom in
Multi-Version OSTM

(SF-MVOSTM)[24]

In order to perform starvation-freedom the latest
K-versions is being maintained corresponding to

each key.

Does not handle deadlock
condition

Time stamp based multi

version[25]

It ensures read-only transaction does not aborts

by using timestamp to decide which version

should be given to the transaction to perform its

read operation.

Inefficient garbage collection

934

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

III. Design of CGVL Locking

Protocol
CGVL supports hierarchical locking mechanism

that provides high robust performance under read and

write intensive workloads. As depicted in figure 1 it

adopts different phases: read, write and maintenance

phase.

Read Phase

In the read phase each transaction entering into

the system is being assigned a unique timestamp. In

order to ensure that transaction T is serializable it

must satisfy the following properties [30]:

• Read Stability: During the execution of

the transaction if a transaction T reads a

particular version V1 of a record. We

must ensure that the value of V1 will not

be changed even at the end of the

transaction. That is by no means V1 will

not be replaced by any other version.

This can be ensured by providing the

suitable version to be read by the

requesting transaction and avoiding any

update on the particular version.

• Phantom avoidance: It ensures that for

each transaction scan an additional new

version is not created.

In our work we have created a specific function

to process the read request as shown below:

If (writeInProgress.contains

(mulitGranularityVersionTableRow)) {

Return

mulitGranularityVersionTableRow.getPreviousD

ataVal () ;}

ThreadContextKeeper.getContext

().getWaitTimeList ()

.add (System.currentTimeMillis () -

ThreadContextKeeper.getContext

().getWaitStartTime ());

Return

mulitGranularityVersionTableRow.getData ();

Write Phase

In this phase each write request consider two

transactional request. The current transaction record

which points to record that represent the version with

which the transaction started and last commit

transaction record which specify the record created

when the transaction commits. To perform valid

write transactional request any transaction Ta checks

the following conditions: It ensures that there exist

no other transaction Tm which started after Ta that

tries to update the same data element then in that case

Ta aborts. The pseudo code given below shows the

working of the write phase.

ThreadContextKeeper.getContext

().getWaitStartTime (System.currentTimeMillis

());

Synchronized

(mulitGranularityVersionTableRow.getData ()) {

Logger. Debug ("Locked by {} by thread {}",

mulitGranularityVersionTableRow.getRouNum

(), Thread.currentThread ().get Name ());

writeInProgress.add

(mulitGranularityVersionTableRow);

 mulitGranularityVersionTableRow.getData

(mulitGranularityVersionTableRow.getData ()

mulitGranularityVersionTableRow.getPreviousD

ataVal

(mulitGranularityVersionTableRow.getData ());

writeInProgress.remove

(mulitGranularityVersionTableRow);

Logger. Debug ("Released by {} by thread {}",

mulitGranularityVersionTableRow.getRouNum

(), Thread.currentThread ().get Name ());

ThreadContextKeeper.getContext().getWaitTime

List ().add (System.currentTimeMillis () -

ThreadContextKeeper.getContext

().getWaitStartTime ());

Maintenance Phase

In this case we validate the record for the last

commit record onwards. Each last commit record is

associated with an increment version number which

is being committed. Basically validation of a

transaction T comprises of three main steps:

• It checks if T’s read set is updated

with the current global state

• For each write request it looks for

an intersection with T’s write set.

• An obsolete version is being

removed by the process known as garbage

collection.

Multi -Version

Locking

Time-Warp Multi-version

algorithm (TWM)[26]

It is based on the principle of time-wrap commit

by allowing any update transaction to perform
stale reads.

Look into account timestamp

counters for each transaction
operations thereby increasing

the computational overhead

Novel MVCC
implementation[27]

It verifies that the (extensional) writes of any
transaction that has committed recently do not

overlap with the intentional read predicate space

that belongs to some other transaction.

Maintenance process becomes
complex.

Cicada [28] In order to support fast serializable concurrency
control it relies on the concept of optimistic

form of multi-version.

Garbage collection technique
is inefficient

Multi-Version
Concurrency Control with

Closures (MV3C)[29]

It handles the conflict among simultaneously
running multiple transactions by partially

aborting and restarting them instead of aborting.

Restarting the transaction
increases computational

overhead

935

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

The pseudo code for the maintenance phase is

given below:-

Synchronized

(mulitGranularityVersionTableRow.getData ()) {

Logger. Debug ("Locked by {} by thread {}",

mulitGranularityVersionTableRow.getRouNum

(), Thread.currentThread ().get Name ());

writeInProgress.add

(mulitGranularityVersionTableRow);

Fig 1: Phases of CGVL Locking Protocol

IV. Evaluation

While In this section the performance of CGVL

has being evaluated. As platform we have used 4 GB

of RAM, comprising of a 64 bit windows XP

installation. For our implementation we have used

Sun JDK 1.5.0. In this environment the different java

threads are being mapped to the kernel threads that

are being scheduled by the operating system. In order

to ensure consistent system conditions the

background processes are disabled as much as

possible so as to maintain consistent system

conditions.

Implementation using Java: The thread

executes in a looping construct which performs

locking and unlocking operation on the data item. On

every run we configure the following parameters: i)

The number of threads ii) The number of locked

object iii) The duration of critical section (CPU

Cycles).For each looping iteration the thread selects

the locked object. Our result uses the average value

obtained after 10 repetitions.

We compare CGVL against state-of-the-art

Intention Locking [7] protocol. Basically our test

driver creates multiple threads under different

scenarios which operate concurrently on the

underlying data structure. We further capture the

advantage of Multi version locking and blend in our

proposed work. In order to evaluate the performance

of Multi version locking we implement it under

varying workload read/write ratio and number of

concurrent transactions.

Results :Implementing Multi version and

Single version

We first discussed the results of implementing

Multi version locking and compare its performance

with single version locking by considering the

following parameters.

a) Effects of varying workload read/write

ratio: A key property of update transactions

is the ratio between reads and writes. We

explore the spectrum from a read-intensive

workload having read/write ratio of 10:0 to a

write-intensive workload having read/write

ratio of 0:10.We designed a scenario which

comprises of 10 transactions that perform

their transactional operations depending on

their number of read-write request. The

detailed scenario covered is being shown in

table 2. Interestingly, in table 3 we observe

that for the read only transaction, the total

execution time is same for both multi version

and single version.

However, the writes into the mix, where the lock

avoidance logic fails, and acquiring read locks with

the exclusive locks (resulting in an extended lock

wait) that are held for the entire duration of the

transaction in the case of single version database.

936

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

While in case of multi-version database the

clashes between readers and writers are eliminated

by acquiring only update locks during transaction

life-time, and holding exclusive locks for a much

shorter period primarily during the commit time. As

shown in the figure 2 and 3 the execution time for the

single version database keeps on increasing as we

execute more of update transactions as compared to

multi-version database. So, we conclude that the

performance of multi version is better than single

version database primarily because the readers and

writers don’t conflict as when an updater writes a

new version of a record, a read could continue

reading the currently committed version of the record

without any blockage.

Table 2: Detailed Scenario for Single and Multi-version Locking (W: Write, R: Read)

Ca

se

No

.

Mode

of

operati

on

Transac

tion 1

Transac

tion 2

Transac

tion 3

Transac

tion 4

Transac

tion 5

Transac

tion 6

Transac

tion 7

Transac

tion 8

Transac

tion 9

Transac

tion 10

1 All

write

operatio

ns

W W W W W W W W W W

2 1
Read,9

write

operatio
ns

W W W W R W W W W W

3 2

Read,8
Write

operatio

ns

R W W W R W W W W W

4 3
Read,7

Write

operatio
ns

R W W R W W W R W W

5 4

Read,6
Write

operatio

ns

R W R W W W R W R W

6 5

Read,5

Write
operatio

ns

R W R W R W R W R W

7 6

Read,4
Write

operatio

ns

R W R W R R W R W R

8 7

Read,3

Write
operatio

ns

R W R W R R W R R R

9 8

Read,2
Write

operatio

ns

R W R R R R R W R R

10 9

Read,1

Write
operatio

ns

R R R R R W R R R R

11 All
Read

operatio

ns

R R R R R R R R R R

937

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

 Table 3: Execution time taken by Single and Multi-Version

Fig 2: Varying read-write ratio

Fig 3: Comparative Analysis

b) Effect of varying contention: We control the

degree of contention by varying the transactions size

in case of both single version and multi version

database. As we increases the number of transactions

from 10 to 30, we observed that existing multi

version outperforms the single version database

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00

Ex
ec

u
ti

o
n

 t
im

e
in

 m
ill

i s
ec

o
n

d
s

Read(r) Write(u) Ratio

Varying read-write ratio Single Version Multi Version

118.50
103.51

92.8283.9877.1266.9157.3049.6841.8236.64
15.24

115.20
95.20

82.1473.3465.19
54.6044.3437.7931.1927.65

13.44
0.00

20.00
40.00
60.00
80.00

100.00
120.00
140.00

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Read-Write Ratio

Comparative Analysis

Single Version Multi Version

Case No. Cases

Single

Version(msec)

Multi

Version(msec)

1 0_10(0 Read 10 Updates) 118.50

115.20

2 1_9(1 Read 9 update) 103.51 95.20

3 2_8(2 Read 8 Update) 92.82 82.14

4 3_7(3 Read 7 Update) 83.98 73.34

5 4_6(4 Read 6 Update) 77.12 65.19

6 5_5(5 Read 5 Update) 66.91 54.60

7 6_4(6 Read 4 Update) 57.30 44.34

8 7_3(7 Read 3 Update) 49.68 37.79

9 8_2(8 Read 2 Update) 41.82 31.19

10 9_1(9 Read 1 Update) 36.64 27.65

11 10_0(10 Read 0 Update) 15.24 13.44

938

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

primarily because with the increase in number of

transactions as shown in figure 4, 5, 6 the contention

is increased significantly between the read locks of

long running read-only transactions and the write

locks (exclusive locks) of update transactions in a

single version database. This increased contention is

less significant in case of multi-version as a result

their execution time is significantly less for mix of

read-write tranasctions.Thus, we performed a

comparative analysis as being shown in figure 7, 8, 9

that validate our work by showing the effectiveness

of multi version over single version locking under

different workloads.

 Fig 4: Varying Workload for 10 transactions Fig 5: Varying Workload for 20 transactions

Figure 6: Varying Workload for 30 transactions

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0
_1

0
(0

 R
ea

d
 1

0
…

1
_9

(1
 R

ea
d

 9
…

2
_8

(2
 R

ea
d

 8
…

3
_7

(3
 R

ea
d

 7
…

4
_6

(4
 R

ea
d

 6
…

5
_5

(5
 R

ea
d

 5
…

6
_4

(6
 R

ea
d

 4
…

7
_3

(7
 R

ea
d

 3
…

8
_2

(8
 R

ea
d

 2
…

9
_1

(9
 R

ea
d

 1
…

1
0

_0
(1

0
 R

ea
d

 0
…

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Varying read-write ratio

Tranasctions=10

Single-Version Mutli-Version

0
1000
2000
3000
4000
5000
6000
7000
8000

0
_2

0
(0

 R
ea

d
 2

0
…

2
_1

8
(2

 R
ea

d
 1

8
…

4
_1

6
(4

 R
ea

d
 1

6
…

6
_1

4
(6

 R
ea

d
 1

4
…

8
_1

2
(8

 R
ea

d
 1

2
…

1
0

_1
0

(1
0

 R
ea

d
 1

0
…

1
2

_8
(1

2
R

ea
d

 8
…

1
4

_6
(1

4
 R

ea
d

 6
…

1
6

_4
(1

6
 R

ea
d

 4
…

1
8

_2
(1

8
 R

ea
d

 2
…

2
0

_0
(2

0
 R

ea
d

 0
…

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Varying read-write ratio

Tranasctions=20

Single-Version Multi-Version

0

2000

4000

6000

8000

10000

12000

14000

0
_3

0
(0

R
ea

d
 3

0
…

1
_2

9
(1

R
ea

d
 2

9
…

2
_2

8
(2

R
ea

d
 2

8
…

3
_2

7
(3

R
ea

d
 2

7
…

4
_2

6
(4

R
ea

d
 2

6
…

5
_2

5
(5

R
ea

d
 2

5
…

6
_2

4
(6

R
ea

d
 2

4
…

7
_2

3
(7

R
ea

d
 2

3
…

8
_2

2
(8

R
ea

d
 2

2
…

9
_2

1
(9

R
ea

d
 2

1
…

1
0

_2
0

(1
0

R
ea

d
 2

0
…

1
1

_1
9

(1
1

R
ea

d
 1

9
…

1
2

_1
8

(1
2

R
ea

d
 1

8
…

1
3

_1
7

(1
3

R
ea

d
 1

7
…

1
4

_1
6

(1
4

R
ea

d
 1

6
…

1
5

_1
5

(1
5

R
ea

d
 1

5
…

1
6

_1
4

(1
6

R
ea

d
 1

4
…

1
7

_1
3

(1
7

R
ea

d
 1

3
…

1
8

_1
2

(1
8

R
ea

d
 1

2
…

1
9

_1
1

(1
9

R
ea

d
 1

1
…

2
0

_1
0

(2
0

R
ea

d
 1

0
…

2
1

_9
(2

1
R

ea
d

 9
…

2
2

_8
(2

2
R

ea
d

 8
…

2
3

_7
(2

3
R

ea
d

 7
…

2
4

_6
(2

4
R

ea
d

 6
…

2
5

_5
(2

5
R

ea
d

 5
…

2
6

_4
(2

6
R

ea
d

 4
…

2
7

_3
(2

7
R

ea
d

 3
…

2
8

_2
(2

8
R

ea
d

 2
…

2
9

_1
(2

9
R

ea
d

 1
…

3
0

_0
(3

0
R

ea
d

 0
…Ex

ec
u

ti
o

n
 t

im
e

in
 m

s

Varying read-write ratio

Transactions=30

Single-Version Multi-Version

939

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

Fig 7: Comparative Analysis for 10 transactions Fig 8: Comparative Analysis for 20 transactions

Fig 9: Comparative Analysis for 30 transactions

Results: Implementing CGVL and MGL

Next we implement CGVL and existing MGL by

considering a scenario which comprises of 10

transactions with 15 different cases where each case

represent the different locking modes. The system

conditions and resources are kept same for both the

protocols. We then implement them to compare their

performance by considering the following

parameters.

a) Effect of varying contention: We study

the effect of varying contention by changing

the read-write ratio and then analysing

performance of the system by considering

its total execution time in each cases. The

results are derived by executing 10

transactions on 15 different cases as shown

in table 4. The two protocols are executed

in JDK environment where CGVL support

certain operations that are executed

concurrently which MGL doesn’t permit.

This thereby lead to the improvement of

existing compatibility matrix of MGL

thereby converting the non-supporting

locking modes into supporting locking

modes as shown in table 5.

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00

0
_1

0
(0

 R
ea

d
 1

0
…

1
_9

(1
 R

ea
d

 9
…

2
_8

(2
 R

ea
d

 8
…

3
_7

(3
 R

ea
d

 7
…

4
_6

(4
 R

ea
d

 6
…

5
_5

(5
 R

ea
d

 5
…

6
_4

(6
 R

ea
d

 4
…

7
_3

(7
 R

ea
d

 3
…

8
_2

(8
 R

ea
d

 2
…

9
_1

(9
 R

ea
d

 1
…

1
0

_0
(1

0
 R

ea
d

 0
…

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Varying read-write ratio

Comparative Analysis for 10 Tranasctions

Single-Version Mutli-Version

0
1000
2000
3000
4000
5000
6000
7000
8000

0
_2

0
(0

 R
ea

d
 2

0
…

2
_1

8
(2

 R
ea

d
 1

8
…

4
_1

6
(4

 R
ea

d
 1

6
…

6
_1

4
(6

 R
ea

d
 1

4
…

8
_1

2
(8

 R
ea

d
 1

2
…

1
0

_1
0

(1
0

 R
ea

d
…

1
2

_8
(1

2
R

ea
d

 8
…

1
4

_6
(1

4
 R

ea
d

 6
…

1
6

_4
(1

6
 R

ea
d

 4
…

1
8

_2
(1

8
 R

ea
d

 2
…

2
0

_0
(2

0
 R

ea
d

 0
…

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Varying read-write ratio

Comparative Analysis for 20 Tranasctions

Single-Version Multi-Version

0
2000
4000
6000
8000

10000
12000
14000

0
_3

0
(0

R
ea

d
 3

0
…

1
_2

9
(1

R
ea

d
 2

9
…

2
_2

8
(2

R
ea

d
 2

8
…

3
_2

7
(3

R
ea

d
 2

7
…

4
_2

6
(4

R
ea

d
 2

6
…

5
_2

5
(5

R
ea

d
 2

5
…

6
_2

4
(6

R
ea

d
 2

4
…

7
_2

3
(7

R
ea

d
 2

3
…

8
_2

2
(8

R
ea

d
 2

2
…

9
_2

1
(9

R
ea

d
 2

1
…

1
0

_2
0

(1
0

R
ea

d
…

1
1

_1
9

(1
1

R
ea

d
…

1
2

_1
8

(1
2

R
ea

d
…

1
3

_1
7

(1
3

R
ea

d
…

1
4

_1
6

(1
4

R
ea

d
…

1
5

_1
5

(1
5

R
ea

d
…

1
6

_1
4

(1
6

R
ea

d
…

1
7

_1
3

(1
7

R
ea

d
…

1
8

_1
2

(1
8

R
ea

d
…

1
9

_1
1

(1
9

R
ea

d
…

2
0

_1
0

(2
0

R
ea

d
…

2
1

_9
(2

1
R

ea
d

 9
…

2
2

_8
(2

2
R

ea
d

 8
…

2
3

_7
(2

3
R

ea
d

 7
…

2
4

_6
(2

4
R

ea
d

 6
…

2
5

_5
(2

5
R

ea
d

 5
…

2
6

_4
(2

6
R

ea
d

 4
…

2
7

_3
(2

7
R

ea
d

 3
…

2
8

_2
(2

8
R

ea
d

 2
…

2
9

_1
(2

9
R

ea
d

 1
…

3
0

_0
(3

0
R

ea
d

 0
…

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Varying read-write ratio

Comparative Analysis for 30 Transactions

Single-Version Multi-Version

940

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

Table 4: Detailed Scenario for CGVL and Multiple Granularity Locking (W: Write, R: Read)

C

a

s

e

N

o.

Loc

k

Mod

es

Supp

ortin

g

Statu

s

Thread

1

Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 8 Thread 9 Thread 10

1 IS-

IS

Yes R|1 R |2 R|3 R|4 R|5 R|6 R |7 R|8 R|9 R|10

2 IS-
IX

Yes R|1 W|2 R|3 W|4 R|5 W|6 R|7 W|8 R|9 W|10

3 IS-S Yes R|1,2,3,

4,5

R|1 R|5,6,7,8,9

,10,11,12

R|2 R|3 R|4 R|1,2,3,4,5 R|4 R|5 R|1,2,3,4,5

,6

4 IS-
SIX

Yes R|1,2,3,
4,5,6,7,

8,9,10,1

1,12-
W|1

R|1 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|2

R|2 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|3

R|3 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|4

R|4 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|5

R|5

5 IS-X No R|1 W|1,2,3,4

,5,6,7,8,9,
10,11,12

R|2 W|1,2,3,4,

5,6,7,8,9,1
0,11,12

R|3 W|1,2,3,4,

5,6,7,8,9,1
0,11,12

R|4 W|1,2,3,4,

5,6,7,8,9,1
0,11,12

R|5 W|1,2,3,4,

5,6,7,8,9,1
0,11,12

6 IX-

IX

Yes W|1 W|2 W|3 W|4 W|5 W|6 W|7 W|8 W|9 W|10

7 IX-S No W|1 R|1,2,3,4,

5,6,7,8,9,

10,11,12

W|2

R|1,2,3,4,5

,6,7,8,9,10

,11,12

W|3 R|1,2,3,4,5

,6,7,8,9,10

,11,12

W|4 R|1,2,3,4,5

,6,7,8,9,10

,11,12

W|5 R|1,2,3,4,5

,6,7,8,9,10

,11,12

8 IX-
SIX

No W|1 R|1,2,3,4,
5,6,7,8,9,

10,11,12-

W|1

W|2 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|2

W|3 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|3

W|4 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|4

W|5 R|1,2,3,4,5
,6,7,8,9,10

,11,12-W|5

9 IX-

X

No W|1 W|1,2,3,4

,5,6,7,8,9,

10,11,12

W|2 W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|3W W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|4 W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|5 W|1,2,3,4,

5,6,7,8,9,1

0,11,12

1

0

S-S Yes R|1,2,3,

4,5,6,7,

8,9,10,1
1,12

R|1,2,3,4,

5,6,7,8,9,

10,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12

1

1

S-

SIX

No R|1,2,3,

4,5,6,7,
8,9,10,1

1,12

R|1,2,3,4,

5,6,7,8,9,
10,11,12-

W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|2

R|1,2,3,4,5

,6,7,8,9,10
,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|3

R|1,2,3,4,5

,6,7,8,9,10
,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|4

R|1,2,3,4,5

,6,7,8,9,10
,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|5

1

2

S-X No R|1,2,3,

4,5,6,7,
8,9,10,1

1,12

W|1,2,3,4

,5,6,7,8,9,
10,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12

W|1,2,3,4,
5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1
0,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12

W|1,2,3,4,

5,6,7,8,9,1
0,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12

W|1,2,3,4,

5,6,7,8,9,1
0,11,12

R|1,2,3,4,5

,6,7,8,9,10
,11,12

1

3

SIX-

SIX

No R|1,2,3,

4,5,6,7,
8,9,10,1

1,12-

W|1

R|1,2,3,4,

5,6,7,8,9,
10,11,12-

W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

R|1,2,3,4,5

,6,7,8,9,10
,11,12-W|1

1

4

SIX-

X

No R|1,2,3,

4,5,6,7,

8,9,10,1
1,12-

W|1

W|1,2,3,4

,5,6,7,8,9,

10,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12-W|1

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12-W|1

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12-W|1

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

R|1,2,3,4,5

,6,7,8,9,10

,11,12-W|1

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

1

5

X-X No W|1,2,3

,4,5,6,7,

8,9,10,1
1,12

W|1,2,3,4

,5,6,7,8,9,

10,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

W|1,2,3,4,

5,6,7,8,9,1

0,11,12

941

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

 Table 5: Improved Locking Modes in CGVL

The total execution time taken in each case has being

calculated as shown in table 6.The figure 10 shows

the improvement of CGVL over existing MGL.

 Table 6: Execution time for MGL and CGVL

 Fig 10: Effect of varying contention

b) Stress Test Implementation: .In order to test the

scalability of CGVL against intention locks (IL) we

next came up with the designing of a synthetic test

bench that execute the two protocols by varying the

number of transactions and comparing their

performances. The same amount work is being

assigned to each thread and we measure the overall

execution time taken for the threads. The number of

threads in our implementation varies from 10 to 50.

We have fragmented our results into two cases

comprising of 1) Improved Locking Modes 2) Non-

Improved Locking Modes.

1) Improved Locking Modes:

We now present the effect of changing the

number of transactions on the system in case of

improved locking modes. It is clearly observed that

there is an enhanced performance of the applications

as we vary the underlying locking mechanisms for

the operations of similar type. Conventional

multiple granularity does not support higher degree

of concurrency as compared to CGVL in case of (IS-

X, IX-S, S-SIX, and S-X) under different set of

transactions being executed (10-50). Basically, as

the number of threads increases, the overhead

incurred gets compensated by the improved degree

of concurrency (on an average 20% performance

improvement over MGL) has being obtained.

 Figure 11-15 depicts the execution time which

varies with respect to the different distributions. In

order to control the distribution, the threads are

restricted to access only a particular set of data

items. The X-axis shows the improved locking

modes while Y-axis represent the execution time

taken by the transactions. We conclude that CGVL

is one of the most promising locking protocol in

hierarchical structure.

As it exhibits enhanced performance compared

to the existing multiple granularity locking protocol

our work and we conclude that which does not

support the locking operations of concurrent

transactions in this particular locking modes. Figure

16-17 shows the percentage of improvement

attained in each case which validate our work and

we conclude that proposed CGVL is better than the

existing MGL locking protocol.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

IS
-I

S

IS
-S

IS
-X

IX
-S

IX
-X

S-
SI

X

SI
X

-S
IX

X
-XEx

ec
u

ti
o

n
 t

im
e

in
 m

se
c

Locking_Modes

 MGL

 CGVL

Locking

Modes(Ti)

Locking

Modes (Tj)

Existing

MGL

approach

Proposed

CGVL

approach

IS X No Yes

IX S No Yes

S (IX,SIX,X) No Yes

SIX S No Yes

X (IS,S) No Yes

Case

No.

Lock

Modes

MGL

(msec) CGVL(msec)

1 IS-IS 152 145

2 IS-IX 199 187
3 IS-S 130 124
4 IS-SIX 361 345
5 IS-X 2178 1800
6 IX-IX 370 350
7 IX-S 551 459
8 IX-

SIX
560 545

9 IX-X 2550 2534
10 S-S 320 302
11 S-SIX 445 380
12 S-X 2600 2100
13 SIX-

SIX
2211 2200

14 SIX-X 4111 3997
15 X-X 4321 4254

942

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

 Fig 11: Improved Locking Modes for 10Transactions

 Fig 12: Improved Locking Modes for 20Transactions

 Fig 13: Improved Locking Modes for 30 transactions Fig 14: Improved Locking Modes for 40 transactions

0

500

1000

1500

2000

2500

3000

IS-X IX-S S-SIX S-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking Modes
10 Threads_CGVL

10 Threads_MGL

0

500

1000

1500

2000

2500

3000

3500

IS-X IX-S S-SIX S-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking Modes

20 Threads_CGVL

20 Threads_MGL

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

IS-X IX-S S-SIX S-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking Modes

30 Threads_CGVL

30 Threads_MGL

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

IS-X IX-S S-SIX S-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking Modes

40 Threads_CGVL

40 Threads_MGL

943

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

Fig 15: Improved Locking Modes for 50 transactions

 Fig 16:Improvement Analysis

Fig 17: Trend line graph for Improved Locking Modes

0

10000

20000

30000

40000

50000

60000

IS-X IX-S S-SIX S-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes

50 Threads_CGVL

50 Threads_MGL

19% 19%

20%

18%

18%

18%

19%

19%

20%

20%

0

5000

10000

15000

20000

25000

30000

IS-X IX-S S-SIX S-X

Im
p

ro
ve

m
en

t

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes

Improvement Analysis

CGVL MGL Improvement

0%

5%

10%

15%

20%

25%

1 0 T H 2 0 T H 3 0 T H 4 0 T H 5 0 T H

Im
p

ro
v
em

en
t

p
er

ce
n

ta
g
e

Number of tranasctions

IS-X IX-S S-SIX S-X

944

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

2) Non-Improved locking modes:

In this section we took up the (S-S,X-X,IS-

IS,IS-S,IX-X) locking modes and study their effect

on the two locking environment as shown in figure

18-22.We noticed that they takes almost same time

to execute for the transactional operations that are

being executed in X-X and IX-IX locking modes.

However, for the other locking modes (IS-IX, IS-

SIX, IX-SIX, SIX-SIX, SIX-X) there is slight

considerable improvement on an average of 5% is

being noticed. The figure 24 provides the analysis of

different locking modes in CGVL environment that

provides a conclusion that our proposed approach is

better than the MGL locking protocol.

 Fig. 18: Non-moved Locking Modes for 10 transactions Fig 19: Non-moved Locking Modes for 20 transactions

 Fig 20: Non-Improved Locking Modes for 30 transactions Fig 21 : Non-Improved Locking Modes for 40 transactions

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

IS
-I

S

IS
-I

X

IS
-S

IS
-S

IX

IX
-I

X

IX
-S

IX

IX
-X S-
S

SI
X

-S
IX

SI
X

-X

X
-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes
10 Threads_MGL

10 Threads_CGVL

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

IS
-I

S

IS
-I

X

IS
-S

IS
-S

IX

IX
-I

X

IX
-S

IX

IX
-X S-
S

SI
X

-S
IX

SI
X

-X

X
-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes

20 Threads_MGL

20 Threads_CGVL

0
3000
6000
9000

12000
15000
18000
21000
24000
27000
30000
33000
36000
39000
42000
45000

IS
-I

S

IS
-I

X

IS
-S

IS
-S

IX

IX
-I

X

IX
-S

IX

IX
-X S-
S

SI
X

-S
IX

SI
X

-X

X
-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes30 Threads_MGL

30 Threads_CGVL

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000
42500
45000
47500

IS
-I

S

IS
-I

X

IS
-S

IS
-S

IX

IX
-I

X

IX
-S

IX

IX
-X S-
S

SI
X

-S
IX

SI
X

-X

X
-X

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes
40 Threads_MGL

40 Threads_CGVL

945

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

Fig 22: Non-Improved Locking Modes for 50 transactions

Conclusion
We proposed an effective locking scheme

namely Collaborative Granular Version Locking

(CGVL) which works on the principle by combining

the query capabilities and flexibility features from the

Multiple Granularity locking (MGL) that is being

successfully integrated with the high concurrency

offered by Multi Version. The concurrency of the

system has been improved by maintaining a series of

version at each granular level so as to allow the

concurrent execution of read and write operation on

the data item. In this work the model predicts the

performance of the system which is based on several

parameters such i) The number of threads ii) The

number of locked object iii) The duration of critical

section (CPU Cycles) which significantly supports

the achievement of enhanced concurrency. We have

been able to validate our work by using a Java Sun

JDK environment, which shows that our CGVL

perform better compared to the existing MGL

methods. In particular, CGVL attains 20% reduction

in execution time for the locking operation as it is

able to convert some of the non-supporting locking

modes into supporting locking modes thereby

improved the compatibility matrix.

References
[1] HyeontaekLim, DongsuHan, DavidG.Andersen,

and Michael Kaminski” MICA: A Holistic

Approach to Fasting-memory Key-value

 Storage”. In Proceedings of the 11th USENIX

Symposium on Networked Systems Design and

Implementation (NSDI).Seattle, WA, 429–444,

2014.

[2] Silas Boyd Wickizer, AustinT.Clements,

Yandong Mao, Aleksey Pesterer, M.Frans

Kaashoek, RobertMorris, and Nickola Zeldovich

“An Analysis of Linux Scalability to Many

Cores. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI).”Vancouver,

Canada,16, 2010

[3] AustinT.Clements, M.FransKaashoek, and

Nickolai Zeldovich “Scalable Address Spaces

Using RCU Balanced Trees”. In Proceedings of

the 17th ACM International Conference on

Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

London, UK, 2012

[4] AustinT.Clements,M.FransKaashoek, and

NickolaiZeldovich.” Radix: Scalable Address

Spaces for Multithreaded Applications”. In

Proceedings of the 8th European Conference on

Computer Systems (Euros).Prague,

CzechRepublic, 2013.

[5] Morris, and Eddie Kohler “The Scalable

Commutatively Rule: Designing Scalable

Software for Multicore Processors”. In

Proceedings of the 24th ACM Symposium on

Operating Systems Principles (SOSP).

Farmington, PA, 2013.

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000
42500
45000
47500
50000
52500

Ex
ec

u
ti

o
n

 t
im

e
in

 m
s

Locking_Modes

50 Threads_MGL 50 Threads_CGVL

946

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

[6] Sanguine Han, Scott Marshall,Byung-Gon

Chunand Sylvia

Ratna“MegaPipe:ANewProgrammingInterfacef

orScalableNetwork I/O”.In Proceedings of the

10th USENIX Symposium on Operating

Systems Design and Implementation

(OSDI).USENIXAssociation,Hollywood,

CA,135–148,2012.

[7] Aleksey Pesterev, Jacob Strauss, Nickolai

Zeldovich, and RobertT. Morris

ImprovingNetworkConnectionLocalityonMultic

ore Systems.InProceedings of the 7th European

Conference on Computer Systems

(Euros).ACM, Bern, Switzerland, 337–350,

2012

[8] Stephen To, Wenting Zheng, Eddie Kohler,

Barbara Liskov, and

SamuelMadden.SpeedyTransactionsinMulticore

In-memory Databases. In Proceedings of the

24th ACM Symposium of Operating Systems

Principles (SOSP).ACM, Farmington, PA, 18–

32, 2013

[9] Jaeho Kim, Ajit Mathew, Sanidhya

Kashyap,Madhava Krishnan Ramanathan,

Changwoo Min” MV RLU:ScalingRead-Log-

Updatewith Multi-Versioning” published in the

proceedings of the Twenty-Fourth International

Conference on Architectural Support for

Programming Languages and Operating

Systems, April 13 - 17, 2019.

[10] Constantine’s Papadopoulos” A Multiple

Granularity Locking Protocol FOR CSCW”

International Journal of Cooperative Information

Systems Vol. 11, Nos. 1 & 2 (2002) 21–50, 2012

[11] SaurabhKalikarandRupeshNasre.2016. Dom

Lock: A New Multi-granularity Locking

Technique for Hierarchies. In Pop 2016. ACM,

Article 23, 23:1– 23:12pages.

https://doi.org/10.1145/2851141.2851164

[12] SaurabhKalikarandRupeshNasre.2017”

NumLock: TowardsOptimalMulti-

GranularityLockingin Hierarchies” .Inapt 2018:

47th International Conference on Parallel

Processing, August 13–16, 2018, Eugene, OR,

USA.ACM, and New

York,NY,USA,10pages.https://doi.org/10.1145/

3225058.3225141.

[13] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian

,Andrew Pavlo “An Empirical Evaluation of In-

Memory Multi-Version Concurrency Control

“published in the Proceedings of the VLDB

Endowment, Vol. 10, No. 7,2017.

[14] Lisping George, Anastasios Andronidis,

CristianCadar ”FreeDA: Deploying In

compatible Stock Dynamic Analyses in

Production via Multi-Version Execution”

published in the proceedings of ACM May 8–10,

2018, Ischia, Italy.

[15] MarcosK.Aguilera,Tudor David, Rachid

Guerraoui, Junxiong Wang “Locking

timestamps versus locking objects” published in

the proceedings of the ACM Symposium on

Principles of Distributed Computing, Pages 367-

376, 2018.

[16] Chirag Juyal, Sandeep Kulkarni, Sweta Kumari,

Sathya Peri, and Archit Somani “An Innovative

Approach to Achieve Compositionality

Efficiently using Multi-Version Object Based

Transactional Systems” Published in

Distributed, Parallel, and Cluster Computing

Journal,2018.

[17] Jaeho Kim, Ajit Mathew, Sanidhya

Kashyap,Madhava Krishnan Ramanathan,

Changwoo Min” MV-RLU:ScalingRead-Log-

Updatewith Multi-Versioning” published in the

proceedings of the Twenty-Fourth International

Conference on Architectural Support for

Programming Languages and Operating

Systems, April 13 - 17, 2019.

[18] Chirag Juyal, Sandeep Kulkarni, Sweta Kumari,

Sathya Peri, and Archit Somani “Achieving

Starvation- Freedom with Greater Concurrency

in Multi-Version Object-based Transactional

Memory Systems” Published in Distributed,

Parallel, and Cluster Computing Journal,2019.

[19] Guy Golan-Gueta,Nathan Bronson,Alex

Aiken,G.Ramalingam,Mooly Sagiv, and

EranYahav.2011. AutomaticFine-grainLocking

Using Shape Properties.In OOPSLA

2011.ACM, 225–242.

https://doi.org/10.1145/2048066.2048086

[20] Peng Liuand Charles Zhang

”UnleashingConcurrencyforIrregularData

Structures”In ICSE 2014 .ACM, 480–490.

https://doi.org/10.1145/2568225.2568277,2014

[21] Yang, KentKB, AubanelE, MacKayS,

AgilaT.Amulti-granularitylocking scheme for

java packed objects based on a concurrent

multiwaytree.ConcurrencyComputatPractExper.

2018;e5024.https://doi.org/10.1002/cpe.5024.

[22] Walter Binder,Adina Mosincat,Samuel Spycher,

Ion Constantinescu and Boi Faltings”

Multiversion concurrency control for the

generalized search tree “Published in

Concurrency and computation: practice and

experience Concurrency

Computat.:Pract.Exper.2009;21:1547–1571

Publishedonline13February2009inWileyInterSc

ience

[23] Jaeho Kim, Ajit Mathew, Sanidhya

Kashyap,Madhava Krishnan Ramanathan,

Changwoo Min” MV-RLU:ScalingRead-Log-

Updatewith Multi-Versioning” published in the

proceedings of the Twenty-Fourth International

Conference on Architectural Support for

Programming Languages and Operating

Systems, April 13 - 17, 2019.

[24] Chirag Juyal, Sandeep Kulkarni, Sweta Kumari,

Sathya Peri, and Archit Somani “An Innovative

Approach to Achieve Compositionality

https://doi.org/10.1145/2851141.2851164
https://doi.org/10.1145/2048066.2048086
https://doi.org/10.1145/2568225.2568277

947

Copyright © Authors
ISSN (Print): 2204-0595

ISSN (Online): 2203-1731

IT in Industry, Vol. 9, No.1, 2021 Published Online 15-March-2021

Efficiently using Multi-Version Object Based

Transactional Systems” Published in

Distributed, Parallel, and Cluster Computing

Journal,2018.

[25] Priyanka Kumar, Sathya Peri, K.Vidyasankar Fig

“A Timestamp Based Multi-Version STM

Algorithm” Published in the International

Conference on Distributed Conference on

Distributed Computing and Networking, pp 212-

226, 2014.

[26] Nuno Diegues Paolo Romano” Time-Warp:

Lightweight Abort Minimization in

Transactional Memory” published in the 19th

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP),, At

Orlando, Florida, USA,2014.

[27] Thomas Neumann ,Tobias Mühlbauer and

Alfons Kemper” Fast Serializable Multi-Version

Concurrency Control for Main-Memory

Database Systems” published in ACM

SIGMOD’15, May 31–June 4, Melbourne,

Victoria, Australia,2015.

[28] Hyeontaek Lim Carnegie Mellon, Michael

Kaminsky, and David G. Andersen “Cicada:

Dependably Fast Multi-Core In-Memory

Transactions “published in ACM SIGMOD ’17,

May 14–19, Chicago, IL, USA, 2017.

[29] Mohammad Dashti, Sachin Basil John, Amir

Shaikhha, and Christoph Koch “Transaction

Repair for Multi-Version Concurrency Control

“published in the proceedings of the ACM

International Conference on Management of

Data, Pages 235-250,USA,May 14-19,2017.

[30] Per-Åke Larson1, Spyros Blanas, Cristian

Diaconu, Craig Freedman, Jignesh M. Patel,

Mike Zwilling” High-Performance Concurrency

Control Mechanisms for Main-Memory

Databases”Published in the 38th International

Conference on Very Large Data Bases, August

27th - 31st 2012, Istanbul, Turkey. Proceedings

of the VLDB Endowment, Vol. 5, No. 4,2011

[30] K. Ganesh, Saurabh Kalikar(B), and Rupesh

Nasre” Multi-granularity Locking in Hierarchies

with Synergistic Hierarchical and Fine-Grained

Locks” 24th International Conference on Parallel

and Distributed Computing Turin, Italy, August

27–31, 2018 Proceedings, Springer International

Publishing AG, part of Springer Nature, pp. 546–

559,2018.

[31] Ms. Swati,Dr Shalini Bhaskar Bajaj” CGVL:An

Hierarchical Locking Mechanism “published in

International Journal of Control and Automation

Vol. 12, No. 6, pp. 725-743,2019.

[32] Peng Liu and Charles Zhang. 2014. Unleashing

concurrency for irregular data structures. In

Proceedings of the 36th International Conference

on Software Engineering (ICSE 2014). ACM,

New York, NY, 480–490. DOI:http://dx.doi.org/

10.1145/2568225.2568277.

