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Abstract—Fuzzing is one of the most commonly used methods 

to detect software vulnerabilities, a major cause of information 

security incidents. Although it has advantages of simple design 

and low error report, its efficiency is usually poor. In this paper 

we present a smart fuzzing approach for integer overflow 

detection and a tool, SwordFuzzer, which implements this 

approach. Unlike standard fuzzing techniques, which randomly 

change parts of the input file with no information about the 

underlying syntactic structure of the file, SwordFuzzer uses 

online dynamic taint analysis to identify which bytes in the input 

file are used in security sensitive operations and then focuses on 

mutating such bytes. Thus, the generated inputs are more likely 

to trigger potential vulnerabilities. We evaluated SwordFuzzer 

with an example program and a number of real-world 

applications. The experimental results show that SwordFuzzer 

can accurately locate the key bytes of the input file and 

dramatically improve the effectiveness of fuzzing in detecting 

real-world vulnerabilities. 
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I.  INTRODUCTION  

Software security has become a very import part of 
information security in recent years. Vulnerabilities are one of   
the root causes of security problems. Once they are exploited 
by attackers, they may cause serious damages. Therefore, 
vulnerability detection technology is gaining more and more 
attention in the field of information security. 

Vulnerability is a hole or a weakness in the application, 
which can be a design flaw or an implementation bug. 
Vulnerability allows an attacker to cause harm to the 
stakeholders of an application. Stakeholders include the 
application owner, application users, and other entities that rely 
on the application [1]. There are many kinds of software 
vulnerabilities, each has its special cause. It is impossible to 
find a detection approach which can detect all kinds of 
vulnerabilities. In this paper, we focus on how to detect integer 
overflow vulnerability. 

As shown in Table I, the annual number of identified 
integer overflow vulnerabilities recorded by the National 
Vulnerability Database (NVD [2]) is stable at around 110 since 
2007. Moreover, the proportion of integer overflow 
vulnerabilities in the total annual number of all vulnerabilities 
is also stable at around 2%. Although this proportion does not 

seem high, these vulnerabilities often have the highest severity 
(with score 7~10). How to detect and eliminate integer 
overflow vulnerability has becoming a hot research topic. 

There are several techniques and tools to detect integer 
overflows, such as KLEE [3], SAGE [4], BuzzFuzz [5] and so 
on. KLEE performs symbolic execution to detect integer 
overflows, while SAGE and BuzzFuzz perform white box 
fuzzing. Though they are all famous and effective tools, they 
all rely on source code which is not always available to users. 
IntScope [6] is an excellent tool which performs binary-based 
fuzzing, but it relies on static analysis. Our aim was to develop 
a dynamic binary-based fuzzing method that is efficient for 
integer overflow vulnerability detection.  

In this paper, we present a smart fuzzing approach for 
integer overflow detection and implement a tool called 
SwordFuzzer which implements this approach. SwordFuzzer 
currently works with x86 binaries on Linux and targets file 
processors, while we plan to extend it to run on the Windows 
operating system and target network packet processors. 

The key ideas of our approach are: (1) using taint analysis 
to identify the key bytes of input files that affect the security 
sensitive operations of the target application; (2) focusing on 
mutating those key bytes to trigger potential vulnerabilities. 

Our contributions can be summarized as follows: 

(1) We propose an effective dynamic integer overflow 
vulnerability detection method combining fuzzing with taint 
analysis. 

(2) We implement a prototype called SwordFuzzer which 
can perform fast online taint analysis and automatic fuzzing for 
real-world binaries.  

TABLE I.  THE REPORTED ANNUAL NUMBER OF INTEGER OVERFLOWS 

AND ALL VULNERABILITIES IN NVD FROM 2007 TO 2013 

Year 
Number of 

Integer Overflows 
Number of All 
Vulnerabilities 

Proportion 

2013 96 5186 1.85 

2012 104 5289 1.97 

2011 92 4150 2.22 

2010 112 4639 2.41 

2009 129 5732 2.25 

2008 112 5632 1.99 

2007 126 6514 1.93 
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The remainder of this paper is organized as follows: 
Section 2 introduces the character of integer overflow, the 
basic ideas of taint analysis and smart fuzzing. Section 3 
presents the design and implementation of SwordFuzzer. 
Section 4 evaluates SwordFuzzer. Section 5 examines the 
limitations of the current implementation, along with future 
considerations. Then related work is presented in Section 6 and 
finally conclusion in Section 7. 

II. OVERVIEW 

A. Integer Overflow 

Integer overflow errors occur when a program fails to 
account for the fact that an arithmetic operation can result in a 
quantity either greater than a data type's maximum value or less 
than its minimum value. These errors often cause problems in 
memory allocation functions, where user input intersects with 
an implicit conversion between signed and unsigned values. If 
an attacker can cause the program to under-allocate memory or 
interpret a signed value as an unsigned value in a memory 
operation, the program may be vulnerable to a buffer overflow 
[7]. 

An integer overflow vulnerability usually has the following 
features: (1) Untrusted source. All the data comes from users 
can be treated as taint source, such as files, network packages, 
keyboard input and so on. (2) Various types of sinks. Sinks are 
the security sensitive points of the target application. If an 
overflowed value is used in these points, a vulnerability may 
occur. For example, when an integer is used in the 
determination of an offset or size for memory allocation, 
copying, concatenation, or similarly, if the integer is 
incremented past the maximum possible value, it may wrap to 
become a very small, or negative number, therefore providing 
an incorrect value. (3) Incomplete or improper sanitization 
checks. Almost all the subtle integer overflow vulnerabilities 
are actually caused by incomplete or improper checks [6, 7].  

As a motivating example, Fig. 1 shows the source code of a 
simple file processor which is vulnerable. It just reads an 
integer (four bytes) from a file “123.data”. As Fig. 1 shows, the 
value of the integer variable “a” depends on the 6~9th bytes of 
the input file (line 9, 10) while “size” depends on “a” (line 12). 
Because “size” is an unsigned short variable, it may be 
overflowed by “a”, then allocated memory size of “buf” (line 
15) will not be enough for “memcpy” (line 16), thus an integer 
overflow occurs. 

B. Taint Analysis 

Taint analysis [8-12] is an emerging program analysis 
technique which has been widely used in many fields of 
information security in recent years, such as malicious code 
analysis, network attack detection and protection, software 
vulnerability detection, protocol format reverse analysis, and so 
on. The main idea behind taint analysis is that any variable that 
can be modified (directly or indirectly) by the user can become 
a security vulnerability (the variable becomes tainted) when a 
tainted variable is used to execute dangerous commands.  

We can distinguish two taint analysis approaches: static 
taint analysis and dynamic taint analysis. The former is 
 

 

Fig. 1. Source code of an example file processor: integer.c 

performed mostly at source level by means of abstract 
interpretation techniques. However, most of the time, the 
source codes of applications are not available. Meanwhile, 
static taint analysis may generate a lot of false positives. So, 
dynamic taint analysis is the more commonly used approach, 
but it is very complex to implement. 

Dynamic taint analysis usually involves three steps: taint 
introduction, taint propagation, and taint check. The advantages 
of dynamic taint analysis are that it offers the capabilities to 
detect most of the input validation vulnerabilities with a very 
low false positive rate. While the disadvantages are that it is 
generally suffering from slow execution, and the problems are 
detected only for the executions path that have been executed 
until now (not for all executable paths) which can lead to false 
negatives. This paper focuses on solving the slow execution 
problem and the correctness of taint propagation. 

C. Smart Fuzzing 

Fuzzing [13, 14] is a traditional vulnerability detection 
technique. It was first proposed and used by Barton Miller in 
1989. Although it was invented more than 20 years ago, it does 
not obsolete and is still an important and commonly used 
method. The idea behind fuzzing is very simple: generating 
malformed inputs and feeding them to an application; if the 
application crashes or hangs, a potential vulnerability is 
detected. Fuzzing has been discussed extensively in both 
academia and industry and has proven successful in finding 
vulnerabilities [15].  

We use smart fuzzing to distinguish from standard fuzzing. 
The prefix smart implies that fuzzing is not performed purely 
randomly, but by taking advantage of some priori knowledge, 
which can be the input formats, some results obtained from 
preliminary analysis of the software, or even some information 
gained during the fuzzing process [16-18]. The goal is then to 
generate (or mutate) inputs that are more likely to trigger 
potential vulnerabilities. 

With the expansion of the scale of software and developers’ 
increasing emphasis on software security, it is becoming more 
and more difficult to detect modern software’s vulnerabilities 
by means of simple purely fuzzing. Traditional fuzzing is 
facing the following challenges: (1) Blindly selection of 

1 #include <stdio.h> 

2 #include <stdlib.h> 

3 int main(int argc, char *argv[]){ 

4  unsigned short size; 

5  int a; 

6  char *buf; 

7   FILE *fp; 

8   fp = fopen(argv[1], "rb"); 

9   fseek(fp,5L,0); 

10   fread(&a, 1, 4, fp); 

11   fclose(fp); 

12  size = a; 

13  printf("%x\n",a); 

14  printf("%x\n",size); 

15  buf= (char *)malloc(size*sizeof(char)); 

16  memcpy(buf, "hello", a); 

17  return 0; 

18 } 
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mutation location and simple mutation policy; (2) Poor code 
coverage; (3) Obstacle brought by the internal check 
mechanisms of software. This paper focuses on solving the first 
challenge. 

III. DESIGN AND IMPLEMENTION 

In this section, we present the design and implementation of 
SwordFuzzer. We first give an overview of SwordFuzzer and 
then describe its detailed design. 

The intuition behind our approach is that inter-overflow 
vulnerabilities are usually caused by the misuse of overflowed 
values. For example, the overflowed value is used in memory 
allocation functions (e.g., malloc, calloc, realloc) as a size 
argument, and it usually results in an insufficient memory 
allocation, which may eventually become an attacker’s 
springboard to a buffer overflow. Thus, we check all the 
dangerous functions to see whether their parameters are tainted. 
If there is any dangerous function like malloc, which uses 
tainted data as parameters, a potential vulnerability may exist. 
Then we use guided fuzzing to find out where the suspicious 
vulnerability lies. 

At a higher level, SwordFuzzer takes an executable 
application and a seed file as input, if the input application has 
an integer overflow vulnerability, it will output the 
vulnerability’s POC (Proof of Concept) and some other 
information which may be very valuable for us to illustrate the 
vulnerability. Fig. 2 shows the overview of SwordFuzzer. 
Given a binary program P to be analyzed, SwordFuzzer’s 
working process can be divided into two procedures: 

Taint Analysis Procedure The taint analysis procedure 
contains three modules: Binary Instrumentation Tool, Taint 
Tracer and KeyBytes Identifier. The Binary Instrumentation 
Tool provides us with a basis platform for binary analysis; The 
Taint Tracer implements our online fine-grained dynamic taint 
tracing logic, it can output a report on whether there are tainted 
date being used in some dangerous ways, a call graph of the 
taint propagation process and all the taint propagation 
instructions. The KeyBytes Identifier is an automatic shell 
script which can further identify which bytes in the input file 
are used by the sensitive functions. 

Fuzzing Procedure The taint analysis procedure reports us 
that there may be a potential integer overflow vulnerability in 
the target application. For example, it reports that some bytes 
of the input file affect the parameter of a malloc function. 
Then, in the fuzzing procedure, we first use the KeyBytes 
Mutater to mutate those bytes to generate new files which we 
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Fig. 2. An overview of SwordFuzzer 

call test cases, we then use the Test Driver to feed these test 
cases to the target program, meanwhile, we use the Program 
monitor to keep watch on the target program’s behaviors, if the 
program crashes or hangs, there may be a integer overflow 
vulnerability, and the corresponding test case is just the 
vulnerability’s POC. 

A. Binary Instrumentation 

We implement our taint analysis logic by the aid of Pin 
DBI (dynamic binary instrumentation) framework. Pin [24] is a 
DBI framework for the IA-32 and x86-64 instruction-set 
architectures that enables the creation of dynamic program 
analysis tools. The tools created using Pin, called Pintools, can 
be used to perform program analysis on user space applications 
in Linux and Windows.  

Briefly, Pin consists of a virtual machine (VM) library, and 
an injector that attaches the VM in already running processes 
or new processes that launch by themselves. Pintools are 
shared libraries that employ Pin’s extensive API to inspect and 
modify a binary at the instruction level.  

B. Taint Tracer 

Taint Tracer is the core module of the taint analysis 
procedure. Its function is to perform dynamic taint tracing. The 
detailed design is as flows:  

1) Taint Introduction 
There are usually two ways to introduce taint. The first way 

is to hook a system function or system call, for instance, if we 
define files as taint source, the fread() call in Fig. 1 would 
introduce taint. The other way is to introduce taint during the 
process of program execution which can be customized by 
users, for example, when the program executes to a certain 
function customized by the user, the corresponding taint would 
be introduced. 

Our Taint Tracer introduces taint by hooking system calls. 
For example, if files are defined as taint sources, it will hook 
open, create, read and so on; if network packages are defined as 
taint sources, it will hook socket calls. 

Meanwhile, our Taint Tracer allows user to customize the 
taint sources by a series of parameters. For file taint source, it 
has three parameters: “-tf”, “-to” and “-ts”. The “-tf” parameter 
indicates the input file to be set as taint source file, the “-to” 
parameter indicates the offset in the taint file to be set as taint, 
and the “-ts” parameter indicates how much bytes to be set as 
taint source. 

2) Taint Propagation 
During program execution, tainted dates are tracked as they 

are copied and altered by program instructions. Tainted data 
are assigned with tags. Tags propagate from the instructions’ 
source operand to destination operand according to the 
semantic of the instruction. The taint propagation algorithm 
directly affects the correctness of the whole taint propagation 
process. 

There are two basic problems of taint propagation. One 
problem is the taint propagation granularity, which refers to the 
size of the smallest taint unit. It is important to choose a  
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Fig. 3. Example Pin analysis call 

suitable granularity. If the granularity is too large, it would 
easily lead to tainted data loss and inaccurate taint propagation. 
On the contrary, if the granularity is too small, it would easily 
lead to excessive taint proliferation and the taint propagation 
logic would become too complicated to implement. Therefore, 
we choose byte-level taint propagation granularity, since most 
instructions are calculated in bytes and the smallest addressable 
chunk of memory in most architectures is a byte. Our choice is 
sufficient for fine-grained taint tracing. 

Another problem is the taint tag size. Every unit of tainted 
data is assigned with a taint tag. The smallest size of taint tag 
can be just a single-bit. For example, “1” indicates that the unit 
of data is tainted while “0” indicates untainted. Larger tags are 
more versatile as they allow for different types of data to be 
tagged uniquely. However, larger tags require more 
complicated propagation logic and more storage space. Since 
our goal is fast taint tracing and the faster the better, we choose 
sing-bit tags. 

At binary level, two objects can be tainted: memory 
locations and registers, therefore, our Taint Tracer stores taint 
tags in two data structures. One data structure is the 
“mem_taint_map”, it holds one bit for each byte of process 
addressable memory. Another data structure is the 
“reg_taint_map”, it assigns one 32-bit unsigned integer for 
each 32-bit register of the x86 architecture, the lower 4 bits of 
the integer represent the register’s tags. 

As for the policy of taint propagation, we mainly consider 
three types of propagation: (1) Data replication operations (e.g. 
MOV, PUSH, POP, etc.). For this case, just copy the tags of 
the source operand to the destination operand; (2) Data 
arithmetic operations and bit manipulation (e.g. ADD, SUB, 
AND, SHL, etc.). For this case, we need to do arithmetic 
operations on the tags of both the source operand and the 
destination operand, and update the destination operand’s tag 
with the operational result. (3) Side effect. Some operations 
may cause hidden side effects, for instance, the REP operation 
would affect the ECX register and arithmetic operations would 
affect EFLAGS register. 

3) Taint Check 

The purpose of taint check is to check whether tainted data 
are used in some dangerous ways, such as covering the return 
address on the stack, being the value of EIP, being the 
parameter of dangerous functions (e.g. malloc). 

Currently, we mainly check the two types of sensitive 
operation: memory allocation and branch statement. For the 
first type, we check the taint tags of the addresses of the 
parameters of malloc, calloc and realloc to see if they are 
tainted; for the second type, we instrument the jmp/call/ret 
instructions to see if the address of the branch target is tainted. 
Fig. 3 shows an example Pin analysis call to check “calloc”. 

C. Keybytes Identifier 

The key idea of the Keybytes Identifier is to trace every 
single byte of the input taint file to find out all the bytes 
directly affect the sensitive operations which we call 
“Keybytes”.  We use a shell script to implement this idea. We 
run the taint tracer with the “-to” parameter equals to “0” and 
the “-ts” parameter equals to “1” at the first time, then we run 
the taint tracer again and again with the “-to” parameter equals 
to “1”, and so on. 

D. Keybytes Mutater 

The Keybytes Mutater’s function is to generate test cases 
by the means of mutating the key bytes of the input seed file. 
We use a series of mutation policies to mutate these bytes. For 
example, we may mutate one bytes a time or a several bytes a 
time, and we may want to get different mutations for every 
single byte. All the policies can be configured by users via 
several parameters.  

E. Test Driver 

The Test Driver’s function is to feed the test cases to target 
program one by one, and notice the Program Monitor to 
monitor the behavior of target program execution. 

F. Program Monitor 

The Program Monitor’s function is to monitor and capture 
program exceptions. Monitoring target under test is a critical 
step because it helps identifying and analyzing which test cases 
cause program exceptions and why the exceptions happen. Our 
Program Monitor is a debugger which can attach to the 
program under test. 

IV. EVALUATION 

In this section, we first evaluated SwordFuzzer with the 
example application showed in Fig. 1. Then we evaluated it 
with a real-world vulnerable application. Finally we evaluated 
it for testing a variety of real-world applications. All the tests 
were done on Ubuntu 12.04. We mainly evaluated its ability to 
accurately identify key bytes, to generate effective test cases 
via mutating the key bytes and to detect real-world 
vulnerabilities.  

A. Vulnerability Dection of Example Application 

We used “gcc” to compile the source code showed in Fig. 1 
to an object file “integer” for test. Firstly, we gived it a seed 
input file “123.data” and it run normally (see Fig. 4). Then we 
used SwordFuzzer testing this program. The result is that 
SwordFuzzer identified the “6~9” bytes of the file “123.data” 
affecting the sensitive operation “malloc” (see Fig. 5), this 
result is obviously accurate. Then, in the next fuzzing 
procedure, we kept on mutating the key bytes of the seed file to 
generate new test cases and successfully found a test case 
triggering the integer overflow vulnerability soon(see Fig. 6).  

  VOID CallocCheck(ADDRINT n, ADDRINT size) 

  { 

   if(IsTainted(n)) 

   TraceFile <<"Calloc: n= "<<*(int *)n<< " is tainted!" << endl; 

   if(IsTainted(size)) 

   TraceFile<<"Calloc: size= "<<*(int *)size<< " is tainted!"<< endl; 

  }  
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Fig. 4. The execution of “integer” with an seed file “123.data”  

 

Fig. 5. A taint analysis result of “integer”  

 

Fig. 6. A test case triggering the vulnerability     

B. Vulnerbility Dection of Real-world Application 

In this section, we used a known real-word vulnerability to 
evaluate SwordFuzzer, that is CVE-2007-4938 [25], CVE-
2007-4938 is an integer overflow vulnerability of MPlayer 
1.0rc1. The POC was get from the Exploit Databases [26]. 

As Fig. 7 shows, SwordFuzzer found the parameter “n” of 
three calloc() functions is tainted data. For the last calloc() 
function, the value of “n” is “0x10000020” while the value of 
the parameter “size”  is “0x24”, thus the size of the memory to 
be allocated would be 0x10000020*0x24=0x240000480; this 
value exceeds the maximum possible value of an integer, thus 
an integer overflow occurs; Furthermore, SwordFuzzer 
identified that it is the “225~228” bytes of the input POC file 
that affected this calloc(). 

C. Testing Results 

Next, we evaluated SwordFuzzer with a number of widely 
used utility applications. Table 2 shows the taint analysis result 
which indicates that our tool can give alarms of integer  

 

 

 

Fig. 7. Test result of a known real-world vulnerability 

TABLE II.  THE REPORTED ANNUAL NUMBER OF INTEGER OVERFLOWS 

AND ALL VULNERABILITIES IN NVD FROM 2007 TO 2013 

Program 
File 

Type 
File Size Key Bytes 

Affected sensitive 

operations 

eog 
3.4.2 

png 105274B 
17~25, 
50~53 

malloc 

eog 
3.4.2 

gif 193885B 
16, 

27~30 
malloc, realloc 

lowriter 

3.5.7.2 
odt 23366B Null Null 

lowriter 

3.5.7.2 
docx 106220B Null Null 

FoxReader 

1.1 
pdf 228667B Null Null 

Shotwell 

0.12.3 
jpg 105066B 23~24 

malloc,calloc, 
realloc 

Shotwell 

0.12.3 
bmp 304902B 19~26 

malloc,calloc, 
realloc 

 

overflows and can accurately location the key bytes of various 
types of files such as png, gif, jpg, bmp and so on. We also 
successfully generate test cases for these applications. Take the 
picture viewer application “eog” as an example, we choose a 
common gif file with a size of 193885 bytes (193.9KB) as seed 
file, and we find out that there are only five key bytes (16, 
27~30) affecting sensitive operations, that is, we need only 
mutate 5 bytes instead of 193885 bytes, thus the efficiency of 
fuzzing has been improved dramatically. 

V. LIMATATINOS AND FUTURE WORK 

The limitations of our work can be summarized as follows: 
(1) Incomplete taint tracing. SwordFuzzer is implemented 
based on Pin DBI framework, which could only perform 
program analysis on user space, thus may lose some taint 
information in the kernel space. (2) Not support 64-bit 
architectures.  

In the future, we plan to extend SwordFuzzer to run on 
Windows operating systems and 64-bit architectures, and target 
network packet processors. 

VI. RELATED WORK 

Zzuf [19] is a transparent application input fuzzer. It works 
by intercepting file and network operations and changing 
random bits in the program’s input. Zzuf’s main purpose is to 
make things easier and automated.  

Sulley [20] is an actively developed fuzzing engine and 
fuzz testing framework consisting of multiple extensible 
components. The goal of the frame work is to simplify not only 
data representation but to simplify data transmission and 
instrumentation. 

Peach [21] is a Smart Fuzzer that is capable of performing 
both generation and mutation based fuzzing. One distinctive 
high level concept of peach is modeling. Peach operates by 
applying fuzzing to models of data and state. 

Fuzzgrind [22] is a fully automatic fuzzing tool, generating 
test files with the purpose of discovering new execution paths 
likely to trigger bugs and potentially vulnerabilities. It is based 
on the concept of symbolic execution. 
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TaintScope [23] is an automatic fuzzing system working at 
the x86 binary level using dynamic taint analysis and symbolic 
execution techniques. The most amazing feature of TaintScope 
is that it can generate checksum-aware inputs. 

VII. CONCLUSION 

In this paper, we have presented a taint based smart fuzzing 
approach for integer overflow vulnerability detection. Our 
approach first uses dynamic taint analysis to find suspicious 
integer overflow vulnerabilities, then uses fuzzing to validate 
them. We have implemented our approach in a system called 
SwordFuzzer. Experimental results show that SwordFuzzer can 
accurately locate the key bytes of the input file and generate 
effective fuzzing test cases via mutating these key bytes. For 
the number of key bytes occupies only a small proportion of 
file size, thus the efficiency of fuzzing has been improved 
dramatically.  
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