
IT in Industry, vol. 2, no. 3, 2014 Published online 27-Oct-2014

 ISSN (Print): 2204-0595

Copyright © Authors 98 ISSN (Online): 2203-1731

A Smart Fuzzing Approach for Integer Overflow

Detection

Jun Cai, Peng Zou, Jun He

The Academy of Equipment

Beijing, China

cjgfkd@163.com

Jinxin Ma

China Informaiton Technology Security Evaluation Center
Beijing, China

majinxin2003@126.com

Abstract—Fuzzing is one of the most commonly used methods

to detect software vulnerabilities, a major cause of information

security incidents. Although it has advantages of simple design

and low error report, its efficiency is usually poor. In this paper

we present a smart fuzzing approach for integer overflow

detection and a tool, SwordFuzzer, which implements this

approach. Unlike standard fuzzing techniques, which randomly

change parts of the input file with no information about the

underlying syntactic structure of the file, SwordFuzzer uses

online dynamic taint analysis to identify which bytes in the input

file are used in security sensitive operations and then focuses on

mutating such bytes. Thus, the generated inputs are more likely

to trigger potential vulnerabilities. We evaluated SwordFuzzer

with an example program and a number of real-world

applications. The experimental results show that SwordFuzzer

can accurately locate the key bytes of the input file and

dramatically improve the effectiveness of fuzzing in detecting

real-world vulnerabilities.

Keywords—information security; vulnerability detection;
dynamic taint analysis; smart fuzzing

I. INTRODUCTION

Software security has become a very import part of
information security in recent years. Vulnerabilities are one of
the root causes of security problems. Once they are exploited
by attackers, they may cause serious damages. Therefore,
vulnerability detection technology is gaining more and more
attention in the field of information security.

Vulnerability is a hole or a weakness in the application,
which can be a design flaw or an implementation bug.
Vulnerability allows an attacker to cause harm to the
stakeholders of an application. Stakeholders include the
application owner, application users, and other entities that rely
on the application [1]. There are many kinds of software
vulnerabilities, each has its special cause. It is impossible to
find a detection approach which can detect all kinds of
vulnerabilities. In this paper, we focus on how to detect integer
overflow vulnerability.

As shown in Table I, the annual number of identified
integer overflow vulnerabilities recorded by the National
Vulnerability Database (NVD [2]) is stable at around 110 since
2007. Moreover, the proportion of integer overflow
vulnerabilities in the total annual number of all vulnerabilities
is also stable at around 2%. Although this proportion does not

seem high, these vulnerabilities often have the highest severity
(with score 7~10). How to detect and eliminate integer
overflow vulnerability has becoming a hot research topic.

There are several techniques and tools to detect integer
overflows, such as KLEE [3], SAGE [4], BuzzFuzz [5] and so
on. KLEE performs symbolic execution to detect integer
overflows, while SAGE and BuzzFuzz perform white box
fuzzing. Though they are all famous and effective tools, they
all rely on source code which is not always available to users.
IntScope [6] is an excellent tool which performs binary-based
fuzzing, but it relies on static analysis. Our aim was to develop
a dynamic binary-based fuzzing method that is efficient for
integer overflow vulnerability detection.

In this paper, we present a smart fuzzing approach for
integer overflow detection and implement a tool called
SwordFuzzer which implements this approach. SwordFuzzer
currently works with x86 binaries on Linux and targets file
processors, while we plan to extend it to run on the Windows
operating system and target network packet processors.

The key ideas of our approach are: (1) using taint analysis
to identify the key bytes of input files that affect the security
sensitive operations of the target application; (2) focusing on
mutating those key bytes to trigger potential vulnerabilities.

Our contributions can be summarized as follows:

(1) We propose an effective dynamic integer overflow
vulnerability detection method combining fuzzing with taint
analysis.

(2) We implement a prototype called SwordFuzzer which
can perform fast online taint analysis and automatic fuzzing for
real-world binaries.

TABLE I. THE REPORTED ANNUAL NUMBER OF INTEGER OVERFLOWS

AND ALL VULNERABILITIES IN NVD FROM 2007 TO 2013

Year
Number of

Integer Overflows
Number of All
Vulnerabilities

Proportion

2013 96 5186 1.85

2012 104 5289 1.97

2011 92 4150 2.22

2010 112 4639 2.41

2009 129 5732 2.25

2008 112 5632 1.99

2007 126 6514 1.93

IT in Industry, vol. 2, no. 3, 2014 Published online 27-Oct-2014

 ISSN (Print): 2204-0595

Copyright © Authors 99 ISSN (Online): 2203-1731

The remainder of this paper is organized as follows:
Section 2 introduces the character of integer overflow, the
basic ideas of taint analysis and smart fuzzing. Section 3
presents the design and implementation of SwordFuzzer.
Section 4 evaluates SwordFuzzer. Section 5 examines the
limitations of the current implementation, along with future
considerations. Then related work is presented in Section 6 and
finally conclusion in Section 7.

II. OVERVIEW

A. Integer Overflow

Integer overflow errors occur when a program fails to
account for the fact that an arithmetic operation can result in a
quantity either greater than a data type's maximum value or less
than its minimum value. These errors often cause problems in
memory allocation functions, where user input intersects with
an implicit conversion between signed and unsigned values. If
an attacker can cause the program to under-allocate memory or
interpret a signed value as an unsigned value in a memory
operation, the program may be vulnerable to a buffer overflow
[7].

An integer overflow vulnerability usually has the following
features: (1) Untrusted source. All the data comes from users
can be treated as taint source, such as files, network packages,
keyboard input and so on. (2) Various types of sinks. Sinks are
the security sensitive points of the target application. If an
overflowed value is used in these points, a vulnerability may
occur. For example, when an integer is used in the
determination of an offset or size for memory allocation,
copying, concatenation, or similarly, if the integer is
incremented past the maximum possible value, it may wrap to
become a very small, or negative number, therefore providing
an incorrect value. (3) Incomplete or improper sanitization
checks. Almost all the subtle integer overflow vulnerabilities
are actually caused by incomplete or improper checks [6, 7].

As a motivating example, Fig. 1 shows the source code of a
simple file processor which is vulnerable. It just reads an
integer (four bytes) from a file “123.data”. As Fig. 1 shows, the
value of the integer variable “a” depends on the 6~9th bytes of
the input file (line 9, 10) while “size” depends on “a” (line 12).
Because “size” is an unsigned short variable, it may be
overflowed by “a”, then allocated memory size of “buf” (line
15) will not be enough for “memcpy” (line 16), thus an integer
overflow occurs.

B. Taint Analysis

Taint analysis [8-12] is an emerging program analysis
technique which has been widely used in many fields of
information security in recent years, such as malicious code
analysis, network attack detection and protection, software
vulnerability detection, protocol format reverse analysis, and so
on. The main idea behind taint analysis is that any variable that
can be modified (directly or indirectly) by the user can become
a security vulnerability (the variable becomes tainted) when a
tainted variable is used to execute dangerous commands.

We can distinguish two taint analysis approaches: static
taint analysis and dynamic taint analysis. The former is

Fig. 1. Source code of an example file processor: integer.c

performed mostly at source level by means of abstract
interpretation techniques. However, most of the time, the
source codes of applications are not available. Meanwhile,
static taint analysis may generate a lot of false positives. So,
dynamic taint analysis is the more commonly used approach,
but it is very complex to implement.

Dynamic taint analysis usually involves three steps: taint
introduction, taint propagation, and taint check. The advantages
of dynamic taint analysis are that it offers the capabilities to
detect most of the input validation vulnerabilities with a very
low false positive rate. While the disadvantages are that it is
generally suffering from slow execution, and the problems are
detected only for the executions path that have been executed
until now (not for all executable paths) which can lead to false
negatives. This paper focuses on solving the slow execution
problem and the correctness of taint propagation.

C. Smart Fuzzing

Fuzzing [13, 14] is a traditional vulnerability detection
technique. It was first proposed and used by Barton Miller in
1989. Although it was invented more than 20 years ago, it does
not obsolete and is still an important and commonly used
method. The idea behind fuzzing is very simple: generating
malformed inputs and feeding them to an application; if the
application crashes or hangs, a potential vulnerability is
detected. Fuzzing has been discussed extensively in both
academia and industry and has proven successful in finding
vulnerabilities [15].

We use smart fuzzing to distinguish from standard fuzzing.
The prefix smart implies that fuzzing is not performed purely
randomly, but by taking advantage of some priori knowledge,
which can be the input formats, some results obtained from
preliminary analysis of the software, or even some information
gained during the fuzzing process [16-18]. The goal is then to
generate (or mutate) inputs that are more likely to trigger
potential vulnerabilities.

With the expansion of the scale of software and developers’
increasing emphasis on software security, it is becoming more
and more difficult to detect modern software’s vulnerabilities
by means of simple purely fuzzing. Traditional fuzzing is
facing the following challenges: (1) Blindly selection of

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(int argc, char *argv[]){

4 unsigned short size;

5 int a;

6 char *buf;

7 FILE *fp;

8 fp = fopen(argv[1], "rb");

9 fseek(fp,5L,0);

10 fread(&a, 1, 4, fp);

11 fclose(fp);

12 size = a;

13 printf("%x\n",a);

14 printf("%x\n",size);

15 buf= (char *)malloc(size*sizeof(char));

16 memcpy(buf, "hello", a);

17 return 0;

18 }

IT in Industry, vol. 2, no. 3, 2014 Published online 27-Oct-2014

 ISSN (Print): 2204-0595

Copyright © Authors 100 ISSN (Online): 2203-1731

mutation location and simple mutation policy; (2) Poor code
coverage; (3) Obstacle brought by the internal check
mechanisms of software. This paper focuses on solving the first
challenge.

III. DESIGN AND IMPLEMENTION

In this section, we present the design and implementation of
SwordFuzzer. We first give an overview of SwordFuzzer and
then describe its detailed design.

The intuition behind our approach is that inter-overflow
vulnerabilities are usually caused by the misuse of overflowed
values. For example, the overflowed value is used in memory
allocation functions (e.g., malloc, calloc, realloc) as a size
argument, and it usually results in an insufficient memory
allocation, which may eventually become an attacker’s
springboard to a buffer overflow. Thus, we check all the
dangerous functions to see whether their parameters are tainted.
If there is any dangerous function like malloc, which uses
tainted data as parameters, a potential vulnerability may exist.
Then we use guided fuzzing to find out where the suspicious
vulnerability lies.

At a higher level, SwordFuzzer takes an executable
application and a seed file as input, if the input application has
an integer overflow vulnerability, it will output the
vulnerability’s POC (Proof of Concept) and some other
information which may be very valuable for us to illustrate the
vulnerability. Fig. 2 shows the overview of SwordFuzzer.
Given a binary program P to be analyzed, SwordFuzzer’s
working process can be divided into two procedures:

Taint Analysis Procedure The taint analysis procedure
contains three modules: Binary Instrumentation Tool, Taint
Tracer and KeyBytes Identifier. The Binary Instrumentation
Tool provides us with a basis platform for binary analysis; The
Taint Tracer implements our online fine-grained dynamic taint
tracing logic, it can output a report on whether there are tainted
date being used in some dangerous ways, a call graph of the
taint propagation process and all the taint propagation
instructions. The KeyBytes Identifier is an automatic shell
script which can further identify which bytes in the input file
are used by the sensitive functions.

Fuzzing Procedure The taint analysis procedure reports us
that there may be a potential integer overflow vulnerability in
the target application. For example, it reports that some bytes
of the input file affect the parameter of a malloc function.
Then, in the fuzzing procedure, we first use the KeyBytes
Mutater to mutate those bytes to generate new files which we

Executable

and

SeedFile

Binary

Instrumentation

Taint Tracer

KeyBytes

Identifier

KeyBytes

Mutater

Test Generator

Program

Monitor

POC and

Corresponding

Information

Taint Analysis Procedure Fuzzing Procedure

Fig. 2. An overview of SwordFuzzer

call test cases, we then use the Test Driver to feed these test
cases to the target program, meanwhile, we use the Program
monitor to keep watch on the target program’s behaviors, if the
program crashes or hangs, there may be a integer overflow
vulnerability, and the corresponding test case is just the
vulnerability’s POC.

A. Binary Instrumentation

We implement our taint analysis logic by the aid of Pin
DBI (dynamic binary instrumentation) framework. Pin [24] is a
DBI framework for the IA-32 and x86-64 instruction-set
architectures that enables the creation of dynamic program
analysis tools. The tools created using Pin, called Pintools, can
be used to perform program analysis on user space applications
in Linux and Windows.

Briefly, Pin consists of a virtual machine (VM) library, and
an injector that attaches the VM in already running processes
or new processes that launch by themselves. Pintools are
shared libraries that employ Pin’s extensive API to inspect and
modify a binary at the instruction level.

B. Taint Tracer

Taint Tracer is the core module of the taint analysis
procedure. Its function is to perform dynamic taint tracing. The
detailed design is as flows:

1) Taint Introduction
There are usually two ways to introduce taint. The first way

is to hook a system function or system call, for instance, if we
define files as taint source, the fread() call in Fig. 1 would
introduce taint. The other way is to introduce taint during the
process of program execution which can be customized by
users, for example, when the program executes to a certain
function customized by the user, the corresponding taint would
be introduced.

Our Taint Tracer introduces taint by hooking system calls.
For example, if files are defined as taint sources, it will hook
open, create, read and so on; if network packages are defined as
taint sources, it will hook socket calls.

Meanwhile, our Taint Tracer allows user to customize the
taint sources by a series of parameters. For file taint source, it
has three parameters: “-tf”, “-to” and “-ts”. The “-tf” parameter
indicates the input file to be set as taint source file, the “-to”
parameter indicates the offset in the taint file to be set as taint,
and the “-ts” parameter indicates how much bytes to be set as
taint source.

2) Taint Propagation
During program execution, tainted dates are tracked as they

are copied and altered by program instructions. Tainted data
are assigned with tags. Tags propagate from the instructions’
source operand to destination operand according to the
semantic of the instruction. The taint propagation algorithm
directly affects the correctness of the whole taint propagation
process.

There are two basic problems of taint propagation. One
problem is the taint propagation granularity, which refers to the
size of the smallest taint unit. It is important to choose a

IT in Industry, vol. 2, no. 3, 2014 Published online 27-Oct-2014

 ISSN (Print): 2204-0595

Copyright © Authors 101 ISSN (Online): 2203-1731

Fig. 3. Example Pin analysis call

suitable granularity. If the granularity is too large, it would
easily lead to tainted data loss and inaccurate taint propagation.
On the contrary, if the granularity is too small, it would easily
lead to excessive taint proliferation and the taint propagation
logic would become too complicated to implement. Therefore,
we choose byte-level taint propagation granularity, since most
instructions are calculated in bytes and the smallest addressable
chunk of memory in most architectures is a byte. Our choice is
sufficient for fine-grained taint tracing.

Another problem is the taint tag size. Every unit of tainted
data is assigned with a taint tag. The smallest size of taint tag
can be just a single-bit. For example, “1” indicates that the unit
of data is tainted while “0” indicates untainted. Larger tags are
more versatile as they allow for different types of data to be
tagged uniquely. However, larger tags require more
complicated propagation logic and more storage space. Since
our goal is fast taint tracing and the faster the better, we choose
sing-bit tags.

At binary level, two objects can be tainted: memory
locations and registers, therefore, our Taint Tracer stores taint
tags in two data structures. One data structure is the
“mem_taint_map”, it holds one bit for each byte of process
addressable memory. Another data structure is the
“reg_taint_map”, it assigns one 32-bit unsigned integer for
each 32-bit register of the x86 architecture, the lower 4 bits of
the integer represent the register’s tags.

As for the policy of taint propagation, we mainly consider
three types of propagation: (1) Data replication operations (e.g.
MOV, PUSH, POP, etc.). For this case, just copy the tags of
the source operand to the destination operand; (2) Data
arithmetic operations and bit manipulation (e.g. ADD, SUB,
AND, SHL, etc.). For this case, we need to do arithmetic
operations on the tags of both the source operand and the
destination operand, and update the destination operand’s tag
with the operational result. (3) Side effect. Some operations
may cause hidden side effects, for instance, the REP operation
would affect the ECX register and arithmetic operations would
affect EFLAGS register.

3) Taint Check

The purpose of taint check is to check whether tainted data
are used in some dangerous ways, such as covering the return
address on the stack, being the value of EIP, being the
parameter of dangerous functions (e.g. malloc).

Currently, we mainly check the two types of sensitive
operation: memory allocation and branch statement. For the
first type, we check the taint tags of the addresses of the
parameters of malloc, calloc and realloc to see if they are
tainted; for the second type, we instrument the jmp/call/ret
instructions to see if the address of the branch target is tainted.
Fig. 3 shows an example Pin analysis call to check “calloc”.

C. Keybytes Identifier

The key idea of the Keybytes Identifier is to trace every
single byte of the input taint file to find out all the bytes
directly affect the sensitive operations which we call
“Keybytes”. We use a shell script to implement this idea. We
run the taint tracer with the “-to” parameter equals to “0” and
the “-ts” parameter equals to “1” at the first time, then we run
the taint tracer again and again with the “-to” parameter equals
to “1”, and so on.

D. Keybytes Mutater

The Keybytes Mutater’s function is to generate test cases
by the means of mutating the key bytes of the input seed file.
We use a series of mutation policies to mutate these bytes. For
example, we may mutate one bytes a time or a several bytes a
time, and we may want to get different mutations for every
single byte. All the policies can be configured by users via
several parameters.

E. Test Driver

The Test Driver’s function is to feed the test cases to target
program one by one, and notice the Program Monitor to
monitor the behavior of target program execution.

F. Program Monitor

The Program Monitor’s function is to monitor and capture
program exceptions. Monitoring target under test is a critical
step because it helps identifying and analyzing which test cases
cause program exceptions and why the exceptions happen. Our
Program Monitor is a debugger which can attach to the
program under test.

IV. EVALUATION

In this section, we first evaluated SwordFuzzer with the
example application showed in Fig. 1. Then we evaluated it
with a real-world vulnerable application. Finally we evaluated
it for testing a variety of real-world applications. All the tests
were done on Ubuntu 12.04. We mainly evaluated its ability to
accurately identify key bytes, to generate effective test cases
via mutating the key bytes and to detect real-world
vulnerabilities.

A. Vulnerability Dection of Example Application

We used “gcc” to compile the source code showed in Fig. 1
to an object file “integer” for test. Firstly, we gived it a seed
input file “123.data” and it run normally (see Fig. 4). Then we
used SwordFuzzer testing this program. The result is that
SwordFuzzer identified the “6~9” bytes of the file “123.data”
affecting the sensitive operation “malloc” (see Fig. 5), this
result is obviously accurate. Then, in the next fuzzing
procedure, we kept on mutating the key bytes of the seed file to
generate new test cases and successfully found a test case
triggering the integer overflow vulnerability soon(see Fig. 6).

 VOID CallocCheck(ADDRINT n, ADDRINT size)

 {

 if(IsTainted(n))

 TraceFile <<"Calloc: n= "<<*(int *)n<< " is tainted!" << endl;

 if(IsTainted(size))

 TraceFile<<"Calloc: size= "<<*(int *)size<< " is tainted!"<< endl;

 }

IT in Industry, vol. 2, no. 3, 2014 Published online 27-Oct-2014

 ISSN (Print): 2204-0595

Copyright © Authors 102 ISSN (Online): 2203-1731

Fig. 4. The execution of “integer” with an seed file “123.data”

Fig. 5. A taint analysis result of “integer”

Fig. 6. A test case triggering the vulnerability

B. Vulnerbility Dection of Real-world Application

In this section, we used a known real-word vulnerability to
evaluate SwordFuzzer, that is CVE-2007-4938 [25], CVE-
2007-4938 is an integer overflow vulnerability of MPlayer
1.0rc1. The POC was get from the Exploit Databases [26].

As Fig. 7 shows, SwordFuzzer found the parameter “n” of
three calloc() functions is tainted data. For the last calloc()
function, the value of “n” is “0x10000020” while the value of
the parameter “size” is “0x24”, thus the size of the memory to
be allocated would be 0x10000020*0x24=0x240000480; this
value exceeds the maximum possible value of an integer, thus
an integer overflow occurs; Furthermore, SwordFuzzer
identified that it is the “225~228” bytes of the input POC file
that affected this calloc().

C. Testing Results

Next, we evaluated SwordFuzzer with a number of widely
used utility applications. Table 2 shows the taint analysis result
which indicates that our tool can give alarms of integer

Fig. 7. Test result of a known real-world vulnerability

TABLE II. THE REPORTED ANNUAL NUMBER OF INTEGER OVERFLOWS

AND ALL VULNERABILITIES IN NVD FROM 2007 TO 2013

Program
File

Type
File Size Key Bytes

Affected sensitive

operations

eog
3.4.2

png 105274B
17~25,
50~53

malloc

eog
3.4.2

gif 193885B
16,

27~30
malloc, realloc

lowriter

3.5.7.2
odt 23366B Null Null

lowriter

3.5.7.2
docx 106220B Null Null

FoxReader

1.1
pdf 228667B Null Null

Shotwell

0.12.3
jpg 105066B 23~24

malloc,calloc,
realloc

Shotwell

0.12.3
bmp 304902B 19~26

malloc,calloc,
realloc

overflows and can accurately location the key bytes of various
types of files such as png, gif, jpg, bmp and so on. We also
successfully generate test cases for these applications. Take the
picture viewer application “eog” as an example, we choose a
common gif file with a size of 193885 bytes (193.9KB) as seed
file, and we find out that there are only five key bytes (16,
27~30) affecting sensitive operations, that is, we need only
mutate 5 bytes instead of 193885 bytes, thus the efficiency of
fuzzing has been improved dramatically.

V. LIMATATINOS AND FUTURE WORK

The limitations of our work can be summarized as follows:
(1) Incomplete taint tracing. SwordFuzzer is implemented
based on Pin DBI framework, which could only perform
program analysis on user space, thus may lose some taint
information in the kernel space. (2) Not support 64-bit
architectures.

In the future, we plan to extend SwordFuzzer to run on
Windows operating systems and 64-bit architectures, and target
network packet processors.

VI. RELATED WORK

Zzuf [19] is a transparent application input fuzzer. It works
by intercepting file and network operations and changing
random bits in the program’s input. Zzuf’s main purpose is to
make things easier and automated.

Sulley [20] is an actively developed fuzzing engine and
fuzz testing framework consisting of multiple extensible
components. The goal of the frame work is to simplify not only
data representation but to simplify data transmission and
instrumentation.

Peach [21] is a Smart Fuzzer that is capable of performing
both generation and mutation based fuzzing. One distinctive
high level concept of peach is modeling. Peach operates by
applying fuzzing to models of data and state.

Fuzzgrind [22] is a fully automatic fuzzing tool, generating
test files with the purpose of discovering new execution paths
likely to trigger bugs and potentially vulnerabilities. It is based
on the concept of symbolic execution.

IT in Industry, vol. 2, no. 3, 2014 Published online 27-Oct-2014

 ISSN (Print): 2204-0595

Copyright © Authors 103 ISSN (Online): 2203-1731

TaintScope [23] is an automatic fuzzing system working at
the x86 binary level using dynamic taint analysis and symbolic
execution techniques. The most amazing feature of TaintScope
is that it can generate checksum-aware inputs.

VII. CONCLUSION

In this paper, we have presented a taint based smart fuzzing
approach for integer overflow vulnerability detection. Our
approach first uses dynamic taint analysis to find suspicious
integer overflow vulnerabilities, then uses fuzzing to validate
them. We have implemented our approach in a system called
SwordFuzzer. Experimental results show that SwordFuzzer can
accurately locate the key bytes of the input file and generate
effective fuzzing test cases via mutating these key bytes. For
the number of key bytes occupies only a small proportion of
file size, thus the efficiency of fuzzing has been improved
dramatically.

ACKNOWLEDGMENT

This research has been supported by National High
Technology Research and Development Program of China
(2012AA012902) and “HGJ” National Major Technological
Projects (2013ZX01045-004-002).

REFERENCES

[1] OWASP, Category:Vulnerability [Online]. Available:

https://www.owasp.org/index.php/Category:Vulnerability

[2] NIST, National Vulnerability Database [Online]. Available:
http://web.nvd.nist.gov/view/vuln/search-advanced

[3] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementation

(OSDI’08), San Diego, CA, 2008, pp. 209-224.

[4] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz

testing,” in Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), San Diego, CA, February 2008,

pp. 151-166.

[5] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing”, in Proceedings of the IEEE 31st International Conference on

Software Enineering (ICSE’09), May 16-24, 2009, Vancouver, Canada,
pp. 474–484.

[6] T. Wang, T. Wei, Z. Lin, and W. Zou, “IntScope: automatically

detecting integer overflow vulnerability in X86 binary using symbolic
execution”, in Proceedings of the 16th Network and Distributed System

Security Symposium (NDSS’09), San Diego, CA, February 2009.

[7] OWASP, Integer Overflow [Online]. Available:
https://www.owasp.org/index.php/Integer_overflow

[8] J. Newsome and D. Song, “Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity

software,” in Proceedings of the Network and Distributed System

Security Symposium (NDSS 2005).

[9] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis

framework”, in Proceedings of the 2007 International Symposium on
Software Testing and Analysis (ISSTA’07), ACM, July 9–12, 2007,

London, England, United Kingdom, pp. 196-206.

[10] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but

might have been afraid to ask)”, in the Proceedings of the 2010 IEEE
Symposium on Security and Privacy, May 2010, pp. 317-331.

[11] E. Bosman, A. Slowinska, and H. Bos, “Minemu: the world’s fastest

taint tracker,” in Proceedings of the 14th International Conference on
Recent advances in Intrusion Detection (RAID’11), 2011, pp. 1–20.

[12] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:

practical dynamic data flow tracking for commodity systems,” in
VEE’12, March 3–4, 2012, London, England, UK.

[13] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability

Discovery, Addison–Wesley Professional, United States, 2007.

[14] A. Takanen. (2009). Fuzzing: the past, the present and the future,
[Online]. Available: http://actes.sstic.org/SSTIC09/Fuzzing-the_Past-

the_Present_and_the_Future/SSTIC09-article-A-Takanen-Fuzzing-
the_Past-the_Present_and_the_Future.pdf

[15] B. S. Pak, “Hybrid Fuzz Testing: Discovering Software Bugs via
Fuzzing and Symbolic Execution”, School of Computer Science

Carnegie Mellon University, May 2012.

[16] S. Rawat and L. Mounier, “Offset-aware mutation based fuzzing for
buffer overflow vulnerabilities: few preliminary results”, in Proceedings

of the 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 531-533.

[17] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “Finding software

vulnerabilities by smart fuzzing,” in Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing, Verification and

Validation, (ICST), 2011, pp. 427–430.

[18] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “A taint based approach
for smart fuzzing,” in Proceedings of the 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation (ICST),
2012, pp. 818–825.

[19] Caca labs, Zzuf – Multi-purpose fuzzer [Online]. Available:.

http://caca.zoy.org/wiki/zzuf

[20] A pure-python fully automated and unattended fuzzing framework
[Online]. Available: https://github.com/OpenRCE/sulley

[21] M. Eddington, Peach fuzzer [Online]. Available: http://peachfuzzer.com/

[22] Sogeti ESEC Lab, Fuzzgrind [Online]. Available: http://esec-
lab.sogeti.com/pages/Fuzzgrind

[23] T. Wang, T. Wei, G. Gu, W. Zou, “Checksum-aware fuzzing combined

with dynamic taint analysis and symbolic execution”, ACM Transactions
on Information and System Security, vol. 14, no.2, article 15, September

2011.

[24] Intel, Pin - A Dynamic Binary Instrumentation Tool [Online]. Available:
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool

[25] NIST, CVE-2007-4938 [Online]. Available:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-4938

[26] Offensive Security, The Exploit Database [Online]. Available:

http://www.exploit-db.com/

http://www.exploit-db.com/

