Integral transforms of \((p,s,k)\) Mittag-Leffler function \(pE_{k,\theta,\vartheta}^{\rho,s}(z)\)

Preeti Chhattry, Shobha Shukla, Subhash Chandra Shrivastava

Department of Mathematics and Statistics,
C.V.Raman University Kota, Bilaspur (C.G.), India-495113.
Rungta college of Engineering and Technoogy Bhilai (C.G.),India-490024
Email: preetichhattry@gmail.com
shobhashukla0@gmail.com
subhash_2911@rediffmail.com

Abstract

In this paper, we evaluate Melin-Barnes integral representation of \((p,s,k)\) Mittag-Leffler function. Sumudu transform have been used in the generalization of Mittag-Leffler function. Also we establish some corollary of a special cases. Some new result are our finding.

MSC(2010):

Keywords: \((p,s,k)\) Mittag-Leffler Function, Mellin transform, Summudu transform.

1 INTRODUCTION AND PRELIMINARIES

In this paper study with Mittag-Leffler function and its generalizations. Its importance is realized during the last one and half decades due to its direct involvement in the problem of physics, biology, engineering and applied sciences. Mittag-Leffler function naturally occurs as the solution of fractional order differential equation and fractional order integral equations.

1.1 Mittag-Leffler function

Suppose that \(\theta \in \mathbb{C}, Re(\theta) > 0, z \in \mathbb{Z}\) then Mittag-Leffler function defined by

\[
E_\theta(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1 + n\theta)}
\]

(1)

\[
E_{\theta,\vartheta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\vartheta + n\theta)}
\]

(2)

\(\theta, \vartheta \in \mathbb{C}, Re(\theta) > 0, Re(\vartheta) > 0 z \in \mathbb{Z}\) Recently in 2012, G.A. Dorrego, and R.A. Cerutti introduce...
the K-Mittag Leffler function $E^{\varphi}_{\kappa,\vartheta,\varphi}(z)$ defined by

$$E^{\varphi}_{\kappa,\vartheta,\varphi}(z) = \frac{(\varphi)_{n,k} z^n}{\Gamma_k(n\vartheta + \varphi)n!}$$

(3)

where $k \in \mathbb{R}, \vartheta, \varphi, \rho \in \mathbb{C} Re(\theta) > 0, Re(\varphi) > 0$.

Let $k, p \in R^+ - \{0\}; \vartheta, \varphi, \rho \in C/kZ; Re(\theta) > 0, Re(\varphi) > 0, Re(\rho) > 0$ and $s \in (0,1) \cup N$.

The p - k Mittag-Leffler function denoted by $pE^{\varphi}_{k,\vartheta,\varphi}(z)$ and defined as

$$pE^{\varphi}_{k,\vartheta,\varphi}(z) = \sum_{n=0}^{\infty} \frac{p(\rho)_{ns,k} z^n}{p\Gamma_k(n\vartheta + \varphi)n!}.$$

(4)

Suppose that $k, p, s \in \mathbb{R}, \vartheta, \varphi, \rho \in \mathbb{C} Re(\theta) > 0, Re(\varphi) > 0 and Re(\rho) > 0$ then Mittag-Leffler (p, s, k) function defined by

$$pE^{\varphi}_{k,\vartheta,\varphi}(z) = \sum_{n=0}^{\infty} \frac{p(\rho)_{n,k,s} z^n}{p\Gamma_{1,k}(n\vartheta + \varphi)n!}.$$

(5)

1.2 Special cases of Mittag-Leffler function

(1) For $s = 1$ equation (2.7) reduces in the Mittag-Leffler(p-k)-function defined in [17]

$$pE^{\varphi}_{k,\vartheta,\varphi}(z) = \sum_{n=0}^{\infty} \frac{p(\rho)_{n,k,1,z^n}}{p\Gamma_{1,k}(n\vartheta + \varphi)n!}.$$

(6)

(2) For $p=1 ans s=1$, equation (2.7) reduce in the Mittag-Leffler k-function defined in [3]

$$1E^{\varphi}_{k,\vartheta,\varphi}(z) = \sum_{n=0}^{\infty} \frac{1(\rho)_{n,k,1,z^n}}{1\Gamma_{1,k}(n\vartheta + \varphi)n!}.$$

(7)

(3) For $k=1, p=1 and s=1$ equation (2.7) reduce in the Mittag-Leffler defined in[12]

$$1E^{\varphi}_{1,\vartheta,\varphi}(z) = \sum_{n=0}^{\infty} \frac{1(\rho)_{n,1,1,z^n}}{1\Gamma_{1,1}(n\vartheta + \varphi)n!}.$$

(8)

(4) For $k=1, p=1, s=1 and \varphi = 1$, equation (2.7) reduce in the Mittag-Leffler defined in [2]

$$1E^{\varphi}_{1,\vartheta,\varphi}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\vartheta + \varphi)n!}.$$

(9)

(5) For $k=1, p=1, s=1 \vartheta = 1and \varphi = 1$, equation (2.7) reduce in the Mittag-Leffler k-function defined in [4]

$$1E^{\varphi}_{1,\vartheta,1}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\vartheta + 1)n!}.$$

(10)

(6) If $k=1, p=1, s=1 \theta = 1\vartheta = 1\varphi = 1$, then we get the exponential function.
1.3 Mellin Transform

\[M[f(z) : s] = \int_0^\infty z^{s-1} f(z) \, dz = f^*(s), \text{Re}(s) > 0, \quad (11) \]

then

\[f(z) = M^{-1}[f^*(s) : x] = \int f^*(s) x^{-s} \, ds, \quad (12) \]

1.4 Sumudu Transform

The integral transform very efficient to solve differential equations well as used in science astronomy and physics. Watugala [35] introduce a new transform and named Summudu transform has defined by the following formula:

\[A = f(t) |\mathcal{M}, \eta_1, \eta_2 > 0, |f(t)| < Me^{|t| \tau}, t \in (-1)^j \times [0, \infty). \]

\[G(\tau) = S[f(t); \tau] = \int_0^\infty e^{-tf(\tau t)} \, dt; \tau \in (-\eta_1, -\eta_2) \]

Theorem 1.1: The relation between three parameters, two parameters, and the classical Pochhammer’s symbol is given by

\[p^\left(\frac{\xi}{k}\right)_{n,k,s} = \left(\frac{sp}{k}\right)^n \left(\frac{\xi}{k}\right)_{n,k} = \left(\frac{sp}{k}\right)^n \left(\frac{\xi}{k}\right). \]

Proof: the proof of theorem see[2]

Theorem 1.2 The relation between gamma (p, s, k) function, gamma k-function and classic gamma function is given by

\[p^\Gamma_{k,s}(\xi) = \left(\frac{s}{k}\right)^\xi \Gamma_k(\xi) = \left(\frac{sp}{k}\right)^\xi \Gamma_k(\xi) = \left(\frac{sp}{k}\right)^\xi \Gamma_k(\xi). \]

Proof: the proof of theorem see[2]

Main Result

1.5 Mellin- Barnes integral representation of (p, s, k) Mittag-Leffler function

\[p^E_{\varrho,s}^{q,\theta,\vartheta}(z) \]

In this section, we will present the techniques of Mellin Barnes integral it has been used in the particle physics because of their importance in the inversion of the Laplace and Mellin transforms. Therefore we will evaluate of some contour integral with the help of residue theorem with involving (p, s, k) Mittag-Leffler function.

Theorem 2.1 Let k, p, q > and \(\theta, \vartheta, \varrho\) with Re(\(\theta\)) > 0, Re(\(\vartheta\)) > 0, Re(\(\varrho\)) > 0, then (p, s, k) Mittag-Leffler function \(p^E_{\varrho,s}^{q,\theta,\vartheta}(z)\) is represented by the Mellin-Barnes integral as

\[p^E_{\varrho,s}^{q,\theta,\vartheta}(z) = \frac{k(qp)^{-\frac{\varrho}{\theta}}}{2\pi i \Gamma(\frac{\varrho}{\theta})} \int_L \frac{\Gamma(s) \Gamma((\frac{\varrho}{\theta}) - s)}{\Gamma((\frac{\varrho}{\theta}) - (\frac{n\varrho}{\theta}))} (-z(qp)^{1-\frac{\varrho}{\theta}})^{-s} \, ds. \quad (13) \]

Where \(|arg z| < \pi;\) the contour integration beginning at \(-i\infty\) and ending at \(+i\infty,\) and indented to separate the poles of the integrand as \(s = -nforeveryn \in N_0\)(to the left) from those at \(s = \frac{\varrho}{\theta} + nforeveryn \in N_0\)(to the right).

Proof Consider the integral on right side of equation(2.1) and use the theorem of calculus of
residues,
\[A \equiv \frac{k(qp)}{2\pi i} \left[\sum_{s=-\infty}^{\infty} \text{Res}\left(\frac{\Gamma(s) \Gamma\left(\frac{n}{\kappa} \right)}{\Gamma\left(\frac{n}{\kappa} \right) - \left(\frac{\theta}{\kappa} \right)} \right) (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \right] \]

\[= 2\pi i \text{[sum of the residues at the poles } s = 0, -1, -2, ...]\]

\[A \equiv \frac{k(qp)}{\Gamma\left(\frac{n}{\kappa} \right)} \sum_{n=0}^{\infty} \text{Res}\left(\frac{\Gamma\left(\frac{n}{\kappa} \right) - s}{\Gamma\left(\frac{n}{\kappa} \right) - \left(\frac{\theta}{\kappa} \right)} \right) (-z(qp)^{\frac{1}{\kappa}})^{-s} \]

\[= k(qp)^{-\frac{1}{\kappa}} \sum_{n=0}^{\infty} \frac{\pi(s+n) \sin \pi s}{\Gamma\left(\frac{n}{\kappa} \right)} \left(\frac{\Gamma\left(\frac{n}{\kappa} \right) - s}{\Gamma\left(\frac{n}{\kappa} \right) - \left(\frac{\theta}{\kappa} \right)} \right) (-z(qp)^{\frac{1}{\kappa}})^{-s} \]

using equations (1.14) and (1.17), we have,
\[A \equiv \mu E_{\kappa,\theta,\vartheta}^{s,\varphi}(z) \]

Hence.

1.6 Sumudu Transform of (p,s,k) Mittag-Leffler function \(pE_{\kappa,\theta,\vartheta}^{s,\varphi}(z) \)

In this work our aim is to exhibit solution of a (p,s,k) Mittag-Leffler function by using Sumudu transform.

Theorem 2.2: Let \(k, p, c > 0 \) and \(\theta, \vartheta, \rho \in \mathbb{C} \) with \(\text{Re}(\theta) > 0, \text{Re}(\vartheta) > 0 \) and \(\text{Re}(\rho) > 0 \). Then, the Sumudu transform form of \(pE_{\kappa,\theta,\vartheta}^{s,\varphi}(z) \) is given by

\[S(z_{p}^{\frac{1}{\kappa}} \left(\frac{\Gamma(s) \Gamma\left(\frac{n}{\kappa} \right)}{\Gamma\left(\frac{n}{\kappa} \right) - \left(\frac{\theta}{\kappa} \right)} \right) (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \]

\[= \sum_{n=0}^{\infty} \frac{p(qn)_{n,k,s} \sin \pi s}{\Gamma(n\theta + \vartheta) n!} \int_{0}^{\infty} e^{-z^{k+\varphi} k+\varphi} (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \]

\[= \sum_{n=0}^{\infty} \frac{p(qn)_{n,k,s} \sin \pi s}{\Gamma(n\theta + \vartheta) n!} \int_{0}^{\infty} e^{-z^{k+\varphi} k+\varphi} (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \]

\[= \sum_{n=0}^{\infty} \frac{p(qn)_{n,k,s} \sin \pi s}{\Gamma(n\theta + \vartheta) n!} \int_{0}^{\infty} e^{-z^{k+\varphi} k+\varphi} (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \]

Use theorem 1.1 and 1.2.

\[= \sum_{n=0}^{\infty} \frac{p(qn)_{n,k,s} \sin \pi s}{\Gamma(n\theta + \vartheta) n!} \int_{0}^{\infty} e^{-z^{k+\varphi} k+\varphi} (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \]

1.7 Mellin Transform of (p,s,k) Mittag-Leffler function \(pE_{\kappa,\theta,\vartheta}^{s,\varphi}(z) \)

Theorem 2.3 The Mellin transform of (p,s,k) Mittag-Leffler function, \(pE_{\kappa,\theta,\vartheta}^{s,\varphi}(z) \),

\[\int_{0}^{\infty} t^{s-1} pE_{\kappa,\theta,\vartheta}^{s,\varphi}(-wt) ds = \frac{\Gamma(s) \Gamma\left(\frac{n}{\kappa} \right) - s}{\Gamma\left(\frac{n}{\kappa} \right) - \left(\frac{\theta}{\kappa} \right)} (-z(qp)^{\frac{1}{\kappa}})^{-s} ds \]
Where \(k, p \in R^+ - \{ 0 \}; a, \sigma \in C; Re(\alpha) > 0, Re(\beta) > 0, Re(\gamma) > 0, Re(s) > 0 \) and \(q \in (0, 1) \cup N \).

Proof Putting \(z = -wt \) in equation (11), we have

\[
pE_{k,\vartheta,\sigma}^{\varphi,q}(-wt) = \frac{k(qp)^{\frac{-\varphi}{\pi}}}{2\pi i \Gamma(\frac{\varphi}{k})} \int_L \frac{\Gamma(s) \Gamma(\frac{\varphi}{k} - s)}{\Gamma(\frac{\varphi}{k} - (\varphi + s))} (-wt(qp)^{1-\frac{s}{\pi}})^{-s} ds
\]

where

\[
f^*(s) = \frac{\Gamma(s) \Gamma(\frac{\varphi}{k} - s)}{\Gamma(\frac{\varphi}{k} - (\varphi + s))} (-wt(qp)^{1-\frac{s}{\pi}})^{-s}
\]

1.8 Special Cases

Corollary 3.1 Let \(k, p > 0 \) and \(\theta, \vartheta, \rho \in C \) with \(Re(\theta) > 0, Re(\vartheta) > 0, Re(\rho) > 0 \), then the \((p,k)\) Mittag-Leffler function \(pE_{k,\theta,\rho}^{\varphi,q}(z) \) is represented by the Mellin-Barnes integral as

\[
pE_{k,\theta,\rho}^{\varphi,q}(z) = \frac{k(qp)^{\frac{-\varphi}{\pi}}}{2\pi i \Gamma(\frac{\varphi}{k})} \int_L \frac{\Gamma(s) \Gamma(\frac{\varphi}{k} - s)}{\Gamma(\frac{\varphi}{k} - (\varphi + s))} (-z(qp)^{1-\frac{s}{\pi}})^{-s} ds.
\]

Where \(|\text{arg}z| < \pi \); the contour integration beginning at \(-i\infty\) and ending at \(+i\infty\), and indented to separate the poles of the integrand as \(s = -n + \text{forevery} \in N_0 \) (to the left) from those at \(s = \frac{\rho}{k} + n + \text{forevery} \in N_0 \) (to the right).

Proof: The proof of the corollary are similar with the proof of theorem(2.2) put \(q = 1 \).

Corollary 3.2 Let \(k, p > 0 \) and \(\theta, \vartheta, \rho \in C \) with \(Re(\theta) > 0, Re(\vartheta) > 0, Re(\rho) > 0 \), and then the function \(pE_{k,\theta,\rho}^{\varphi,q}(z) \) is represented by the Mellin-Barnes integral as

\[
E_{k,\theta,\rho}^{\varphi,q}(z) = \frac{k}{2\pi i \Gamma(\frac{\varphi}{k})} \int_L \frac{\Gamma(s) \Gamma(\frac{\varphi}{k} - s)}{\Gamma(\frac{\varphi}{k} - (\varphi + s))} (-z)^{-s} ds.
\]

Where \(|\text{arg}z| < \pi \); the contour integration beginning at \(-i\infty\) and ending at \(+i\infty\), and indented to separate the poles of the integrand as \(s = -n + \text{forevery} \in N_0 \) (to the left) from those at \(s = \frac{\rho}{k} + n + \text{forevery} \in N_0 \) (to the right).

Proof: The proof of the corollary are similar with the proof of theorem(2.2) put \(q = 1 \) and \(p = 1 \).

Corollary 3.3 Let \(Re(\theta) > 0, Re(\vartheta) > 0, Re(\rho) > 0 \), then the function \(E_{1,\theta,\rho}^{\varphi,q}(z) \) is represented by the Mellin-Barnes integral as

\[
E_{1,\theta,\rho}^{\varphi,q}(z) = \frac{1}{2\pi i \Gamma(\vartheta)} \int_L \frac{\Gamma(s) \Gamma(\vartheta - s)}{\Gamma(\vartheta - \theta s)} (-z)^{-s} ds.
\]

Where \(|\text{arg}z| < \pi \); the contour integration beginning at \(-i\infty\) and ending at \(+i\infty\), and indented to separate the poles of the integrand as \(s = -n + \text{forevery} \in N_0 \) (to the left) from those at \(s = \rho + n + \text{forevery} \in N_0 \) (to the right).

Proof: The proof of the corollary are similar with the proof of theorem(2.2) put \(q = 1, k = 1 \) and \(p = 1 \).

Corollary 3.4 Let \(Re(\theta) > 0, Re(\vartheta) > 0 \), then the function \(E_{1,\theta,\rho}^{1,1}(z) \) is represented by the Mellin-Barnes integral as

\[
E_{1,\theta,\rho}^{1,1}(z) = \frac{1}{2\pi i \Gamma(\vartheta)} \int_L \frac{\Gamma(s) \Gamma(\vartheta - s)}{\Gamma(\vartheta - \theta s)} (-z)^{-s} ds.
\]

Where \(|\text{arg}z| < \pi \); the contour integration beginning at \(-i\infty\) and ending at \(+i\infty\), and indented to separate the poles of the integrand as \(s = -n + \text{forevery} \in N_0 \) (to the left) from those at
s = n\text{forevery }n \in \mathbb{N}_0 (\text{to the right}).

Proof The proof of the corollary are similar with the proof of theorem (2.2) put q = 1, k = 1, p = 1 and \(\varrho = 1 \).

Corollary 3.5 Let \(\text{Re}(\theta) > 0 \) then the function \(1E_{1,\vartheta,\varrho}^{1,1}(z) \) is represented by the Mellin-Barnes integral as

\[
1E_{1,\vartheta,\varrho}^{1,1}(z) = \frac{1}{2\pi i} \int_L \frac{\Gamma(s)\Gamma(1-s)}{\Gamma(1-\theta s)} (-z^{-s}ds).
\]

Where \(|\arg z| < \pi \); the contour integration beginning at \(-i\infty\) and ending at \(+i\infty\), and indented to separate the poles of the integrand as \(s = n\text{forevery }n \in \mathbb{N}_0 \) (to the left) from those at \(s = n\text{forevery }n \in \mathbb{N}_0 \) (to the right).

Proof The proof of the corollary are similar with the proof of theorem (2.2) put q = 1, k = 1, p = 1 \(\vartheta = 1 \) and \(\varrho = 1 \).

Corollary 3.6 Let \(k,c > 0 \) \(\theta, \vartheta, \rho \in \mathbb{C} \) with \(\text{Re}(\theta) > 0 \), \(\text{Re}(\vartheta) > 0 \) and \(\text{Re}(\rho) > 0 \). Then, the Sumudu transform form of Mittag-Leffler function \(1E_{k,\theta,\rho}^{c,1} \) is given by

\[
S(z^{v/k}1E_{k,\theta,\rho}^{c,1}(\pm cz^{\theta/k})) = k(1 + \frac{c}{p})^{\theta/k} - \rho/k
\]

Proof The proof of the corollary are similar with the proof of theorem (2.2) put \(s = 1 \).

Corollary 3.7 Let \(k,c > 0 \) and \(\theta, \vartheta, \rho \in \mathbb{C} \) with \(\text{Re}(\theta) > 0 \), \(\text{Re}(\vartheta) > 0 \) and \(\text{Re}(\rho) > 0 \) and \(\text{Re}(\rho) > 0 \) and \(\text{Re}(\rho) > 0 \). Then, the Sumudu transform form of Mittag-Leffler function \(1E_{k,\theta,\rho}^{c,1} \) is given by

\[
S(z^{v/k}1E_{k,\theta,\rho}^{c,1}(\pm cz^{\theta/k})) = k(1 + c)^{\theta/k} - \rho/k
\]

Proof The proof of the corollary are similar with the proof of theorem (2.2) put \(s = 1 \) and \(p = 1 \).

Corollary 3.8 Let \(c > 0 \) and \(\theta, \vartheta, \rho \in \mathbb{C} \) with \(\text{Re}(\theta) > 0 \), \(\text{Re}(\vartheta) > 0 \) and \(\text{Re}(\rho) > 0 \). Then, the Sumudu transform form of Mittag-Leffler function \(1E_{1,\theta,\rho}^{c,1} \) is given by

\[
S(z^{v-1}1E_{1,\theta,\rho}^{c,1}(\pm cz^{\theta})) = (1 + c)^{\theta - \rho}
\]

Proof The proof of the corollary are similar with the proof of theorem (2.2) put \(s = 1, k = 1 \) and \(p = 1 \).

Corollary 3.9 Let \(c > 0 \) and \(\theta, \vartheta, \rho \in \mathbb{C} \) with \(\text{Re}(\theta) > 0 \), \(\text{Re}(\vartheta) > 0 \) and \(\text{Re}(\rho) > 0 \). Then, the Sumudu transform form of Mittag-Leffler function \(1E_{1,\theta,\rho}^{c,1} \) is given by

\[
S(z^{v-1}1E_{1,\theta,\rho}^{c,1}(\pm cz^{\theta})) = (1 + c)^{\theta - \rho}
\]

Proof The proof of the corollary are similar with the proof of theorem (2.2) put \(s = 1, k = 1 \) and \(p = 1 \).

Corollary 3.10 Let \(c > 0 \) and \(\theta, \rho \in \mathbb{C} \) with \(\text{Re}(\theta) > 0 \), \(\text{Re}(\rho) > 0 \). Then, the Sumudu transform form of Mittag-Leffler function \(1E_{1,\theta,\rho}^{c,1} \) is given by

\[
S(z^{v-1}1E_{1,\theta,\rho}^{c,1}(\pm cz^{\theta})) = (1 + c)^{\theta - \rho}
\]

Proof The proof of the corollary are similar with the proof of theorem (2.2) put \(s = 1, k = 1 \) and \(p = 1 \) \(\vartheta = 1 \) and \(\varrho = 1 \).

2** CONCLUSION**

In this paper we evaluate Mellin-Barnes integral representation of (p,s,k, Mittag-Leffler function with their several special cases. We obtained its Mellin transform, Summuadu transform and several special cases. In this above solution the obtained finding will help in generating new result and further studying with new ideas.
References