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Abstract: This study investigates the application 

of the differential transformation method(DTM), 

multi-step differential transform 

method(MsDTM) with step-size and RK4 method 

(Mathematica) for finding the numerical solution 

of the SIR model of dengue fever in epidemiology. 

This model is a system of non-linear ordinary 

differential equations that have no analytic 

solution. Both the methods DTM and MsDTM are 

applied directly without any linearization, 

perturbation or discretization in the model 

equations to obtain semi-analytic solutions. The 

accuracy of the MSDTM is excellent and 

comparable to the RK4 method of Mathematica. 
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Introduction 

Dengue is a mosquito-borne flavivirus found mainly 

in an urban and semi-urban area in tropical and sub-

tropical regions of the world. Aedes mosquitoes 

transmit disease through day-biting. It is the fastest 
spreading viral disease transmitted by vectors and is 

now endemic in over 100 countries, resulting in 40% 

of the world's population living in a dengue-risk 

region [7]. Between 1990 and 2013, the incidence of 

dengue increased dramatically, with the number of 

cases more than doubling per decade, from 8.3 

million obvious cases in 1990 to 58.4 million 

apparent cases in 2013 [29]. Over the last two 

decades, the number of dengue cases registered in the 

records of WHO has raised more than 8 folds, from 

505,430 cases in 2000 to over 2.4 million in 2010 and 
4.2 million in 2019. Reported deaths also rose from 

960 to 4032 between the years 2000 and 2015 [8]. 

In epidemiology, the spread of diseases in the 

population is studied through the mathematical 

formulation of a model for contagious diseases, 

investigation of related parameters, the sensitivity of 

the model by simulating the parameters and present 

numerical simulations. Such modelling not only 
helps to study the patterns of the spread of disease but 

also the possibility to control it optimally. Some of 

the examples of such contagious diseases are 

COVID19, Dengue, E-bola, Measles, Rubella, 

Chicken-pox, HIV/AIDS, Syphilis and others. 

To analyse the spread of infectious diseases, various 

epidemiological models, including the compartment 

model [6], have been developed. This compartment 

model, based on the epidemiological status of the 

population, is divided into three distinct mutually 

exclusive compartments: susceptible S(t), infectious 
I(t) and recovered R(t) at any time t. Several types of 

compartmental models [14-16,19-21] were studied, 

such as SI (susceptible-infected), SIS (susceptible-

infected-susceptible), SIR (susceptible-infected-

recovered), SIRS (susceptible-infected-recovered-

susceptible), and SEIRS (susceptible-exposed-

infected-recovered). The movement of the population 

from one compartment to another depends on the 

transmission rate [11]. Here, in this SIR model, two 

separate but dependent sets of non-linear differential 

equations related to human and vector (mosquito) 

population are considered [9]. The purpose of this 
paper is to find the semi-analytical solution of the 

dengue fever (SIR) model with limited immunity and 

compare the numerical solutions obtained by using 

different methods: differential transform method 

(DTM), multi-step differential transform (with 

different step-size) method (MsDTM) and Runge-

Kutta Method (RK4) using Wolfram Mathematica. 

The paper is organized in the following sections: In 

section 2, the SIR model for dengue fever with model 

parameters is briefly described. Section 3, discusses 

the existence, uniqueness and positivity of the 
solution. Section 4, briefly introduces the theoretical 

and implementation of DTM, MsDTM. Section 5, 

contains numerical solutions and a brief discussion. 

Finally, section 6 has a conclusion. 

 

Formulation of SIR model for Dengue Fever 

In this mathematical model, we assume that host and 

vector populations have a constant size. The birth and 

death rates for human µh and vector µv are constants. 

The human population is divided into three mutually 
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exclusive compartments viz. susceptible Sh, infected 

Ih, and recovered Rh, while vector population due to  

short life span is divided into two classes only: 

susceptible Sv and infected Iv. There is no recovered 

compartment for vectors, as with the death of a 

vector, the period of infection also ends. The model 

of human population and vector is given in Fig. 1 

which is given as a set of non-linear differential 

equations [31]:

����� � ���� � 	�
�� �����
���� � ������� � ������� ,                     �1� �
��� � 	�
�� �����
���� � ��� � ���
����   ,                                            �2� ����� � ��
� ��� � ������� � �������   ,                                               �3� ����� � ���� � 	�
�� �����
���� � �������   ,                                           �4� �
��� � 	�
�� �����
���� � ��
���� .                                                              �5� 

Where   ����� �  ����� �  
���� � �����,   and  ����� � ����� � 
����,    �6�                                               

    Sh(0)=Sh0 ≥ 0, Ih(0)=Ih0 ≥ 0, Rh(0)=Rh0 ≥ 0, Sv(0)=Sv0 ≥ 0, Iv(0)=Iv0 ≥ 0,   

 

The parameters ΛhNh is a change in the total human 

population (the rate of recruitment of human or birth 

rate including migration is Λh). The probability of a 

susceptible individual being infected with the dengue 

virus is βhbIv/Nh, where βh is the probability of getting 

the infection from an infected vector to a susceptible 

human; b denotes a vector’s average bites. µhSh 

represents the number of deaths among susceptible 
human population and µhIh is the number of deaths in 

the infected human population while those infected 

and recovered from the infection are represented by 

γhIh. Rh is the total human population that has 

recovered from the infection but doesn’t gain 

immunity forever. σhRh is the population that 

recovered and is immune for a limited period and 

then joins back the susceptible after a certain period 

(1/σh). The total death of the recovered human 

population is µhRh. ΛvNv is the change in the total 

human population (Λv is the rate of recruitment of 

vector or birth rate including migration). Each 

individual in the susceptible population has the 

probability of being bitten by a vector infected with 

dengue virus is βvbIh/Nh, where βv is the probability 

of transmission of infection from an infected human 
to an infected mosquito, µvSv is the mortality of the 

susceptible vector and µvIv is mortality in the vector 

population. The parameters σh, γh, µh, βh, βv, µv, and b 

are all positive. 

Using Sh/Nh=Sh', Ih/Nh=Ih', Rh/Nh=Rh', Sv/Nv=Sv' and 

Iv/Nv=Iv' and dropping dashes, we obtain 

dimensionless equations from (1) to (6): 

����� � �� � �������
���� � ������� � �������  ,                             �7� �
��� � �������
���� � ��� � ���
����   ,                                                �8� ����� � ��
� ��� � ������� � ������� ,                                                 �9� ����� � �� � �"�����
���� � �������  ,                                                    �10� �
��� � �"�����
���� � ��
����.                                                                   �11� 

Where,  �� � $%& '('%  and �" � 	�
 and ξ1, ξ2 > 0, as b>0 
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The differential transformation method is one of the 

well-known techniques to solve both linear, non-

linear differential equations and partial differential 

equations. It was first introduced by Zhou [34] for 

solving linear and non-linear initial value problems in 
electrical circuit analysis. Subsequently, several 

authors have applied the differential transformation 

method (DTM) and further multi-step differential 

transform method (MsDTM) to solve systems of non-

linear differential equations that describe dynamical 

systems [30], biomathematics models [18] and 

epidemic models [1-3,14,23,26,33]. Several variants 

have been suggested for differential transformation 

method like modified DTM [5], reduced DTM 

[17,22,28] and partitioned DTM [4]. These methods 

are used to write a semi-analytical solution of the 

model which depends on the Taylor series [27]. 
Studies have compared the DTM and Multi-Step 

DTM method and reported that solutions match but 

only for a small value of the independent variable 

[24].  

 

Existence, Uniqueness and Positivity of Solution 

We will use the Lipchitz condition to verify the 

existence and uniqueness of solution [10] for the 

model equations (7) - (11): 

)� � �� � �������
���� � ������� � ������� ,  )" � �������
���� � ��� � ���
����   ,   )* � ��
� ��� � ��� � �������� ,    )+ � �� � �"�����
���� � �������  , ), � �"�����
���� � ��
����. 
Let B denote the region,|� � �.| ≤ 0 , 1|2 � 2.|1 ≤3, where 2 � �2�, 2", … 29�,  2. � �2�., 2"., … 29.� 
also suppose that a(t, x)satisfies the Lipschitz 

condition: ||:��, 2�� � :��, 2"�|| ≤ ;||2� � 2"|| 
Whenever the pairs (t, x1), (t, x2) belong to B where k 

is a positive constant, then there is a positive constant 

δ ≥ 0, such that there exists a unique and continuous 

vector solution x(t) of the system in the interval |t - 

t0|< δ. The condition is satisfied by the requirement 

that 
<=><?@  , A, B � 1,2,3, . . C, be continuous and bounded 

in B. Considering the model equation (7)-(11), we are 

interested in the region 0≤ α ≤ R [26].  

Let B denote the region 0≤ α ≤ R, then equations (7) 

– (11) will have a unique solution if  
<=><?@  , A, B �1,2,3, . .5 are continuous and bounded in B. 

For E1:

 

 

DE)�E�� D � |���
���� � ��| < ∞ , DE)�E
� D � 0 < ∞ , DE)�E��D � |���| < ∞ , DE)�E�� D � 0 < ∞ , 
DE)�E
� D � 0 < ∞.  

For E2: DE)"E�� D � |��
����| < ∞ , DE)"E
� D � |�� � ��| < ∞ , DE)"E��D � 0 < ∞ , DE)"E�� D � 0 < ∞ , 
DE)"E
� D � 0 < ∞.  

For E3: DE)*E�� D � 0 < ∞ , DE)*E
� D � |��| < ∞ , DE)*E��D � |��� � ��| < ∞ , DE)*E�� D � 0 < ∞ , 
DE)*E
� D � 0 < ∞.

 

These partial derivatives exist, continuous and are bounded, similarly for E4, E5. Hence the model has a unique 

solution. The positivity of the solution can be shown easily [31]. 

 

DTM and MsDTM 

The differential transformation of the kth derivative of u(x) is defined as:  

H�;� � 1;! J�KL�2��2K M?N
  .                                                     �12� 

We obtain, 

L�2� � O H�;��2 � 2.�K      ,                                                         �13�P
KQ.

 
          

is called the inverse differential transformation of U(k). In real applications, the function u(x) can be expressed as 

a finite series and equation (13) can be expressed as 
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L�2� � O H�;��2 � 2.�K9
KQ.

   .                                                      �14� 

Also, from (3.1) and (3.2), we have 

L�2� � O�2 � 2.�K 1;! J�KL�2��2K M?Q?N
.                                     �15�9

KQ.
 

From �12�and �13�, the following properties can be obtained.  �1� If z�x� �  u�x� ±  v�x�, then Z�k� �  U�k� ±  V �k�.  �2� If z�x� �  α u�x�, then Z�k� �  α U�k�.  �3� If z�x� �  u′�x�, then Z�k� �  �k �  1�U�k �  1�.  �4� If z�x� �  u′′�x�, then Z�k� �  �k �  1��k �  2�U�k �  2�.  �5� If z�x� �  u�m��x�, then Z�k� �  �k �  1��k �  2�. . . �k �  l�U�k �  l�.  
�6� If z�x� �  u�x�v�x�, then Z�k� O U�l�V�k �  l� K

mQ.
.  

 (7) If z(x) = α 2m  , then Z(k) = α δ(k − l), where Kronecker delta δ(k – l) n1, Ao ; � p0, Ao ; ≠ p  . 
Using the fundamental operations of differential transformation method, let Sh(k), Ih(k), Rh(k), Sv(k) and Iv(k) 

denote the differential transformations of Sh(t), Ih(t), Rh(t), Sv(t) and Iv(t) respectively, the recurrence relation to 

each equation of the system (7) – (11) is as follow: 

��r; � 1s � 1; � 1 t��0�;, 0� � μ�Swr;s � ξ� O SwrpsIyr; � psK
mQ.

� σwRwr;s|,       �16� 


�r; � 1s � 1; � 1 {ξ� O SwrpsIyr; � psK
mQ.

� �γw � μ��Iwr;s  ,                                          �17� 
��r; � 1s � 1; � 1 {��
� r;s � ��� � �����r;s�  ,                                                           �18�     
Syrk � 1s � 1; � 1 {Λy0r;, 0s � ��Syr;s � ξ" O Syrps
�r; � psK

mQ.
� ,                               �19� 

Iyrk � 1s � 1; � 1 tξ" O SvrpsI�r; � psK
mQ.

� ��Iyr;s|  .                                                 �20� 
                                               

Now, we consider the initial conditions from [31], Sh(0) = .99, Ih(0) =0.01, Rh(0) =0, Sv(0) =.99, Iv(0) = 0.01. 

Substituting the initial values to solve Sh(k+1), Ih(k+1), Rh(k+1), Sv(k+1) and Iv(k+1) in  (16)-(20), we get, sh(t), 

ih(t), rh(t), sv(t) and  iv(t) respectively. Then the closed form of the solution of order 6 (k = 6), can be written as: ����� � ∑ ���;��K �  0.99 � 0.000989� � 0.00008751605�" � �4.8357688 × 10����* ��KQ.�1.4188247 × 10����+ � �3.9939127 × 10����, � �1.5241315 × 10��.���,  A���� � ∑ 
��;��K �  0.01 � 0.000011� � 0.00009311605�" � �3.6062986 × 10����* ��KQ.�2.3992481 × 10����+ � �8.9904544 × 10����, � �3.106649 × 10��.���,  ����� � ∑ 
��;��K �   0.001� � �5.6 × 10����" � �3.1227217 × 10����* � �9.8042336 × 10����+ ��KQ.�4.9965416 × 10����, � �1.5825175 × 10��.���,  ����� � ∑ Sy�k�t� � 0.99 � 0.00188� � 0.000012369�" � �6.196514 × 10����* � �2.0586103 ×�KQ.10����+ � �1.0315079 × 10����, � �3.5314596 × 10��.���,  A���� � ∑ Iy�k�t� � 0.01 � 0.00188� � 0.000012369�" � �6.196514 × 10����* � �2.0586103 ×�KQ.10����+ � �1.0315079 × 10����, � �3.5314596 × 10��.���,  
In the Multistep DTM, the interval [0, T] is divided into M subintervals [ti − 1, ti], i = 1, 2..., M of equal step size 

h = T/M by using the nodes ti = ih, with step-size h. First, we apply the DTM to the given equations (16)-(20) 

over the interval [0, t1], and using the initial conditions u1
(K) (0)= dK, the following approximate solution denoted 

by u1
(K) (t) is obtained: 
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u��K��t� � O H�;��K  ,     � ∈ r0, ��s�
KQ.

  
For i ≥ 1, we use at each subinterval [ti − 1, ti] the initial conditions ui(K)(ti−1) = ui-1(K)(ti−1) and apply the DTM 

to the given ODE over the subinterval [ti − 1, ti], where x0 in Equation (13) is replaced by ti−1. The process is 

repeated and generates a sequence of approximate solutions ui(t), i = 1, 2, ..., M for the solution: 

u����  �t� � O H�;��� � �����K  ,     � ∈ r����, ��s�
KQ.

 . 
Hence, the MsDTM assumes the following solution denoted by u(K, M) [25]. 

U�K, M� �
⎩⎪
⎨
⎪⎧ u���� �t�  � ∈ r0, ��su"���  �t�  � ∈ r��, �"s:∶u�������  � ∈ r����, ��s

 . 
 

Therefore, Sh(t) can be expressed in terms of sh(t) given for different time intervals as : sw�0, t� � 0.99 � 0.000989� � 0.00008751605�" � �4.8357688 × 10����* � �1.4188247 × 10����+ ��3.9939127 × 10����, � �1.5241315 × 10��.���,  sw�1, t� � 0.98892383 � 0.0011631298��1 � �� � 0.00008687887��1 � ��" � �4.6910337 ×10�����1 � ��* � �1.2404874 × 10�����1 � ��+ � �3.1682438 × 10�����1 � ��, � �1.237265 ×10��.���1 � ���,  sw�2, t� � 0.98767365 � 0.0013375094��2 � �� � 0.000087733991��2 � ��" � �5.1377197 ×10�����2 � ��* � �1.0993913 × 10�����2 � ��+ � �2.4993325 × 10�����2 � ��, � �9.997816 ×10������2 � ��� , sw�3, t� � 0.98624779 � 0.0015149465��3 � �� � 0.000089911385��3 � ��" � �9.3043039 ×10�����3 � ��* � �9.8838704 × 10�����3 � ��+ � �1.9606311 × 10�����3 � ��, � �8.0173043 ×10������3 � ���,  sw�4, t� � 0.9846419 � 0.0016979466��4 � �� � 0.000093277252��4 � ��" � �1.3076947 ×10�����4 � ��* � �9.0151256 × 10�����4 � ��+ � �1.5310186 × 10�����4 � ��, � �6.3491359 ×10������4 � ���,  sw�5, t� � 0.98284928 � 0.0018887775��5 � �� � 0.000097726841��5 � ��" � �1.654185 ×10�����5 � ��* � �8.337465 × 10�����5 � ��+ � �1.1938498 × 10�����5 � ��, � �4.925603 ×10������5 � ���,  sw�6, t� � 0.98086104 � 0.0020895215��6 � �� � 0.00010317841��6 � ��" � �1.9766659 ×10�����6 � ��* � �7.8080428 × 10�����6 � ��+ � �9.3618048 × 10��.���6 � ��, � �3.6906773 ×10������6 � ��� . 

Similarly, we can find solutions for ih(t), rh(t), sv(t) and iv(t) as a function of time (Appendix) 

 

Numerical Results and Discussion 

In this section, we plot the graph of the growth of Sh(t) susceptible humans, Ih(t) infected humans, Rh(t) recovered 

humans, Sv(t) susceptible vectors and Iv(t) infected vectors using DTM, MsDTM (with step size 6) and Runge-

Kutta method of order 4 implementing though Wolfram Mathematica 11. In Fig. 2, we compare the graphs of the 

susceptible humans using the three methods under consideration. It is found that the results of all three methods 

coincide for small t (in days) while after t=25, the deviation increases in DTM as compared to MsDTM and RK4.  

deviation increases in DTM as compared to MsDTM and RK4.  
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From the graphs of infected humans, recovered 

humans, susceptible vectors and infected vectors 

(Fig 3-6), it is observed that the solutions of DTM 

deviate after t=25, while there is no difference 

between the results of MsDTM (order of polynomial 
in terms of t is 6) and RK4. The values computed 

using DTM deviates from the values obtained using 

MsDTM (h=1) and RK4 significantly after t=25. 

Also, the values obtained for susceptible humans 

(and infected human, recovered humans, susceptible 

vectors and infected vectors) even for large time 

(t=100) is the same for MSDTM and RK4 (Fig. 7).  

The MsDTM method has been further tested with the 

step size h=0.1 and 0.01 and is found to be consistent 

for all the solutions of infected humans, recovered 
humans, susceptible vectors and infected 

vectors(Fig.7-9).  

 

The values of susceptible humans for different time t 

are tabulated here.

  

Table 1 

Time Values of Sh(t) using DTM  Values of Sh(t) using MsDTM  Values of Sh(t) using  RK4 

1 0.988924  0.988924 0.988924 

2 0.987674 0.987674 0.987674 

3 0.986248 0.986248 0.986248 

4 0.984642 0.984642 0.984642 

5 0.982849  0.982849 0.982849 

6 0.980861 0.980861 0.980861 

7 0.978666 0.978666 0.978666 

8 0.976252,  0.976252 0.976253 

9 0.973604 0.973604 0.973605 

10 0.970704 0.970706 0.970707 

15 0.951709 0.951787 0.951788 

20 0.922373 0.923337 0.923337 

25 0.875308 0.881996 0.881995 

30 0.792391 0.824621 0.82462 

40 0.283974 0.659614 0.659614 

50 -1.99193,  0.461903 0.461904 

100 -769.749 0.119838 0.119838 

 

Conclusion 

The compartmental model is used to formulate and 

investigate dengue fever disease dynamics in a 

population with limited immunity. Two sets of 

dependent first-order non-linear equations for 
humans and vectors are obtained using the SIR 

model. The differential transform method (DTM), 

multi-step differential transform method (MsDTM) 

with step-size and RK4 using Mathematica is 

employed to obtain the semi-analytic solution in the 

form of time. The numerical simulations were carried 

out with the above stated three methods to determine 

the long term behaviour of susceptible, infected and 

recovered humans along with susceptible and 

infected vectors and displayed graphically for 

comparison. The solutions obtained using DTM is 
found to be the same as MsDTM and RK4 method 

for small-time t (t<25). While, for t > 25, the solutions 

obtained using MsDTM and RK4 are found to be the 

same. The MsDTM is an excellent alternative method 

for finding analytic solutions of non-linear dependent 

differential equations with the same numerical 

accuracy as obtained by the RK4 method. 
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Appendix 

 Ih(t) can be expressed in terms of ih(t) given for 

different time intervals as : Aw�0, t� � 0.01 � 0.000011� �0.00009311605�" � �3.6062986 × 10����* ��2.3992481 × 10����+ � �8.9904544 ×10����, � �3.106649 × 10��.���, Aw�1, t� � 0.010078741 � 0.00016532975��1 ��� � 0.000083651272��1 � ��" � �2.7305992 ×10�����1 � ��* � �1.9932694 × 10�����1 ���+ � �7.3068445 × 10�����1 � ��, ��2.5247388 × 10��.���1 � ���,  Aw�2, t� � 0.010325184 � 0.00032520273��2 ��� � 0.000076586003��2 � ��" � �2.0015632 ×10�����2 � ��* � �1.6632944 × 10�����2 ���+ � �5.9398296 × 10�����2 � ��, ��2.0476682 × 10��.���2 � ���,  Aw�3, t� � 0.010725131 � 0.00047300685��3 ��� � 0.000071522838��3 � ��" � �1.3917561 ×10�����3 � ��* � �1.3949613 × 10�����3 ���+ � �4.8326816 × 10�����3 � ��, ��1.6555236 × 10��.���3 � ���,  Aw�4, t� � 0.011268404 � 0.00061241204��4 ��� � 0.000068138599��4 � ��" � �8.7895844 ×10�����4 � ��* � �1.1764652 × 10�����4 ���+ � �3.9394893 × 10�����4 � ��, ��1.3320377 × 10��.���4 � ���,  Aw�5, t� � .01194819 � 0.00074650402��5 ��� � 0.000066170121��5 � ��" � �4.4524478 ×10�����5 � ��* � �9.980683 × 10�����5 ���+ � �3.2231794 × 10�����5 � ��, ��1.0639173 × 10��.���5 � ���,  Aw�6, t� � 0.012760515 � 0.00087789225��6 ��� � 0.000065402521��6 � ��" � �7.6239267 ×10�����6 � ��* � �8.5169996 × 10�����6 ���+ � �2.6539013 × 10�����6 � ��, ��8.4029958 × 10������6 � ���.  
Rh(t) can be expressed in terms of rh(t) given for 

different time intervals as : ���0, t� � 0.001� � �5.6 × 10����" ��3.1227217 × 10����* � �9.8042336 ×10����+ � �4.9965416 × 10����, ��1.5825175 × 10��.���,  ���1, t� � 0.00099742952 �0.00099780006��1 � �� � �3.2275972 ×10�����1 � ��" � �2.7775095 × 10�����1 ���* � �7.5278191 × 10�����1 � ��+ �

�4.1386007 × 10�����1 � ��, � �1.2874739 ×10��.���1 � ���,  ���2, t� � 0.0020011634 � 0.0010123066��2 ��� � 0.000011147988��2 � ��" � �2.5153352 ×10�����2 � ��* � �5.6390302 × 10�����2 ���+ � �3.4404971 × 10�����2 � ��, ��1.0478866 × 10��.���2 � ���,  ���3, t� � 0.0030270803 � 0.0010419396��3 ��� � 0.000018388548��3 � ��" � �2.3221865 ×10�����3 � ��* � �4.0657423 × 10�����3 ���+ � �2.8720505 × 10�����3 � ��, ��8.5379312 × 10������3 � ���,  ���4, t� � 0.0040896928 � 0.0010855345��4 ��� � 0.000025138653��4 � ��" � �2.1866532 ×10�����4 � ��* � �2.749526 × 10�����4 ���+ � �2.4084707 × 10�����4 � ��, ��6.9712415 × 10������4 � ���,  ���5, t� � .0052025275 � 0.0011422734��5 ��� � 0.00003155672��5 � ��" � �2.0994297 ×10�����5 � ��* � �1.643218 × 10�����5 ���+ � �2.0293296 × 10�����5 � ��, ��5.7135696 × 10������5 � ���,  ���6, t� � 0.0063784426 � 0.0012116293��6 ��� � 0.000037775885��6 � ��" � �2.0529052 ×10�����6 � ��* � �7.0895673 × 10�����6 ���+ � �1.7177208 × 10�����6 � ��, ��4.7123185 × 10������6 � ���.  
Sv(t) can be expressed in terms of sh(t) given for 

different time intervals as : sy�0, t� � 0.99 � 0.00188� � 0.000012369�" ��6.196514 × 10����* � �2.0586103 × 10����+ ��1.0315079 × 10����, � �3.5314596 × 10��.���,  ���1, t� � .98812637 � 0.0018730776��1 � �� ��5.083454 × 10�����1 � ��" � �5.4695297 ×10�����1 � ��* � �1.5921526 × 10�����1 ���+ � �8.4124306 × 10�����1 � ��, ��2.838726 × 10��.���1 � ���,  ���2, t� � 0.98624289 � 0.0018990567��2 ��� � 0.000020616794��2 � ��" � �4.9114073 ×10�����2 � ��* � �1.2112274 × 10�����2 ���+ � �6.8789158 × 10�����2 � ��, ��2.2948151 × 10��.���2 � ���,  ���3, t� � 0.98431842 � 0.0019545731��3 ��� � 0.000034689765��3 � ��" � �4.4913453 ×10�����3 � ��* � �8.994369 × 10�����3 ���+ � �5.6354076 × 10�����3 � ��, ��1.8673913 × 10��.���3 � ���,  ���4, t� � 0.98232475 � 0.002037094��4 � �� �0.000047677801��4 � ��" � �4.1843699 ×10�����4 � ��* � �6.4389774 × 10�����4 ���+ � �4.6196563 × 10�����4 � ��, ��1.5321104 × 10��.���4 � ���,  ���5, t� � 0.98023585 � 0.0021447673��5 ��� � 0.000059888555��5 � ��" � �3.970084 ×10�����5 � ��* � �4.3450549 × 10�����5 ���+ � �3.7821738 × 10�����5 � ��, ��1.2704791 × 10��.���5 � ���,  ���6, t� � 0.97802727 � 0.002276299��6 � �� �0.000071574086��6 � ��" � �3.8316718 ×
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10�����6 � ��* � �2.633759 × 10�����6 ���+ � �3.0832065 × 10�����6 � ��, ��1.0683288 × 10��.���6 � ���.  
Iv(t) can be expressed in terms of  iv(t) given for 

different time intervals as : Ay�0, t� � 0.01 � 0.00188� � 0.000012369�" ��6.196514 × 10����* � �2.0586103 × 10����+ ��1.0315079 × 10����, � �3.5314596 × 10��.���,  Ay�1, t� � 0.011873632 � 0.0018730776��1 ��� � �5.083454 × 10�����1 � ��" ��5.4695297 × 10�����1 � ��* � �1.5921526 ×10�����1 � ��+ � �8.4124306 × 10�����1 ���, � �2.838726 × 10��.���1 � ���,  Ay�2, t� � .013757111 � 0.0018990567��2 ��� � 0.000020616794��2 � ��" � �4.9114073 ×10�����2 � ��* � �1.2112274 × 10�����2 ���+ � �6.8789158 × 10�����2 � ��, ��2.2948151 × 10��.���2 � ���,  Ay�3, t� � .015681582 � 0.0019545731��3 ��� � 0.000034689765��3 � ��" � �4.4913453 ×

10�����3 � ��* � �8.994369 × 10�����3 ���+ � �5.6354076 × 10�����3 � ��, ��1.8673913 × 10��.���3 � ���,  Ay�4, t� � 0.017675251 � 0.002037094��4 ��� � 0.000047677801��4 � ��" � �4.1843699 ×10�����4 � ��* � �6.4389774 × 10�����4 ���+ � �4.6196563 × 10�����4 � ��, ��1.5321104 × 10��.���4 � ���,  Ay�5, t� � 0.019764147 � 0.0021447673��5 ��� � 0.000059888555��5 � ��" � �3.970084 ×10�����5 � ��* � �4.3450549 × 10�����5 ���+ � �3.7821738 × 10�����5 � ��, ��1.2704791 × 10��.���5 � ���,             Ay�6, t� �0.021972734 � 0.002276299��6 � �� �0.000071574086��6 � ��" � �3.8316718 ×10�����6 � ��* � �2.633759 × 10�����6 ���+ � �3.0832065 × 10�����6 � ��, ��1.0683288 × 10��.���6 � ���. 
 

 


