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Abstract—The automated detection of aspects of spatial be-
haviour in an agent-based model is necessary for model testing
and analysis. In this paper we compare four predictors of herding
behaviour in a model of a grazing herbivore.

We find that a) the mean number of neighbours adjusted
to account for population variation and b) the mean Hamming
distance between rows of the two-dimensional environment can be
used to detect herding. Visual inspection of the model behaviour
revealed that herding occurs when the herbivore mobility reaches
a threshold level. Using this threshold we identify a limits for
these predictors to use in the program code.

These results apply only to one set of parameters and en-
vironment size; future research will involve a wider parameter
space.

Index Terms—Agent-based model, Herding behaviour, Model
testing, Spatial behaviour

I. INTRODUCTION

This paper describes the detection of herding behaviour in
an agent-based model (ABM) of the movement of a herbivore
in a two-dimensional space. The model was built to explore
the mechanism of the predator-prey interaction between the
herbivore and its “prey”, the producer organism on which
it feeds. The ecological findings and the model itself are
described in [3, Ch. 5]. Herding behaviour is of interest
to ecologists; examples of models built to investigate the
mechanism of herding behaviour include those of [16], [4],
[13], [9] and [14].

Of interest here is the programmatic detection of herding,
necessary for model analysis. An important question in the
research described in [3] concerned the model parameters
which affected the development and persistence of herding
behaviour. The investigation of herding sensitivity to each
parameter involved thousands of executions of the model as
each parameter was varied. Herding behaviour is visually
evident in the two-dimensional display written into the model,
but to implement the parameter analysis an automated method
of detection of herding behaviour was needed.

The automated detection of herding in computer-based mod-
els raises a challenging problem of computer science, although
object detection (is it a face?) is more readily implemented
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than object recognition (whose face is it?) [11], [10], [5]. For
the computer code to be able to recognise an object or pattern
such as a herd within the data structure representing the herd
there must be some model of the search object in the code,
and that model ideally should have high interclass variability
but low intraclass variability [10]. Three broad categories of
object detection systems are described in the literature:

1) Model-based systems, in which a model of the pattern
is defined and the system attempts to match this model
to parts of the image [17], [10], [5].

2) Image invariance methods, which define a set of image
pattern characteristics or relationships (such as bright-
ness levels) that uniquely define the search object [15],
[10].

3) Example-based learning algorithms, in which an artifi-
cial neural network system learns the salient features of
the search pattern from other images which are identified
as positive or negative [11], [10].

The detection of herding described here falls into the first
category above.

II. MODEL DESCRIPTION

A. Introduction

The model description below follows the ODD protocol of
[6].

B. Overview

1) Purpose: This model was built to explore the mechanism
of herbivore-producer interaction in a two-dimensional space.
The model was not built to represent any specific system,
but is a parsimonious, generalised model of predator-prey
interaction.

2) State variables and scales: The individuals in the ABM
are a) herbivores and b) cells of a two-dimensional matrix.
The members of the producer species are not represented
as individuals, but rather as an attribute of individual cells.
The biomass of the producer in each cell decreases as it
is eaten and increases according to logistic growth, each
cell having a growth rate (br) and max population (bK)
parameter1. Members of the herbivore species have a resource
level attribute which represents the energy reserves carried by
living organisms. Herbivores are born, consume the biomass
of the cells, reproduce and may die of starvation. After eating,
herbivores move towards cells with higher producer biomass.

The attributes of the herbivores and cells are listed in
Table I. The resource units are not formally defined, nor is

1The symbols are listed in Table I.
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Name Symbol Default Units
value

Matrix
Width mw 100 Cells
Height mh 100 Cells
Edge existence

(values 0 or 1) me 1
Herbivore
Initial population pn 100 Individuals
Initial resources pir 1000 Resource units
Metabolic cost per ts pmc 100 Resource units
Trophic efficiency pte 20
% of producer eaten

on current cell
per time step ppe 80

Max move distance
per time step pmd 1 Cells

Move cost pmvc 10 Resource units
Move level of

stochasticity pms 2.0
Reproductive cost prc 1000 Resource units
Producer
Growth rate of

each cell br 0.1
Max population

of each cell bK 1000 Producer units

TABLE I
DEFAULT INITIAL CONDITIONS AND PARAMETERS USED IN THIS

CHAPTER.

the length of time represented by each simulation time step.
The herbivores have no learning or social behaviour and have
a minimal foraging strategy. Population sizes per time step
and a graphical representation of herbivore positions and cell
biomass levels are the primary outputs of the model.

3) Process overview and scheduling: During each discrete
time step the cells and herbivores are processed individually.
Processing involves the following:

1) Growth of the producer organism: The producer pop-
ulation on each cell advances towards the maximum
carrying capacity of the cell (bK) according to the
growth rate of the cell (br) using the logistic equation.

2) Herbivore movement: Each herbivore moves to the cell
with the highest effective producer population within
the herbivore maximum move distance (pmd). This may
mean staying on the current cell.

3) Implementation of resource intake—herbivores: The re-
source total of each herbivore increases according to the
percentage of producer eaten on current cell parameter
(ppe), the number of herbivores on the cell and the
herbivore trophic efficiency parameter (pte). The cell
producer population is reduced accordingly.

4) Application of metabolic cost—herbivore: The herbi-
vore metabolic cost per time step (parameter pmc) is
subtracted from the resource level of each herbivore.
Herbivores which then do not have sufficient resources
to live one more time step die of starvation.

5) Implementation of asexual reproduction—herbivores:
Herbivores with sufficient resources to live one more
time step and reproduce will produce offspring asexually
at a resource cost of prc per offspring. New individuals
are placed on the same cell as the parent.

All variables are updated in real time, that is, during the
processing of each individual predator or prey object within
each time step.

C. Design concepts

Emergence
The system level outcomes which emerge from the inter-

actions of the herbivores with each other and with individual
cells are the population levels of the two species. These are
the absolute herbivore population per time step and the mean
producer population per cell per time step. In the case of
the herbivore population, no system level phenomena such
as population growth rate, carrying capacity or minimum
population are imposed by the model.

Interaction
The interactions between individual herbivores and individ-

ual cells are:
• Herbivory: the herbivores consume a percentage of the

producer population of the occupied cell. The producer
population, an attribute of each cell, is stored in the
computer memory as a real number with double precision
as defined in [2].

• Occupation: Herbivores have x and y attributes to locate
them in the two-dimensional matrix. Individual cells have
a herbivore population attribute which stores the current
number of herbivores occupying the cell.

The interactions between individual herbivores are:
• Asexual reproduction: herbivores reproduce asexually at

a cost to their individual resource total.
• Co-occupancy: Two or more herbivores may occupy one

cell, reducing the producer units available to the second
herbivore to be processed in the time step.

Individual cells do not interact with each other.
Stochasticity
The model used pseudorandom numbers which were gener-

ated in the Java computer programming language using a linear
congruential formula and a 48-bit seed [2] as described by [8,
Section 3.2.1]. Unless otherwise noted, a uniform distribution
was used as this best represented the selection of the default
parameter values.

During initialisation the pseudorandom number generator is
used to determine the producer population in each cell and
the position in the two-dimensional matrix of each herbivore.
Processing during each time step uses the pseudorandom
number generator in the herbivore movement algorithm as
described below: the cell to which a herbivore moves is
not selected completely deterministically—there is a small
element of chance involved.

Observation
The primary output of the model is the absolute herbivore

population per time step and the mean producer population
per cell per time step, as illustrated in Fig. 4a and e. More
importantly for this discussion, a graphical display of the
two-dimensional matrix of cells shows the position of each
herbivore and the cell producer density each time step as
illustrated in Figs. 1, 2 and 3.

The characteristics of matrix cells
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The cells in the model are graphically represented in the
two-dimensional display as squares. In the model algorithm,
however, cells have zero dimensions: herbivores occupy a
position in the Cartesian plane which is defined with integer
x and y coordinates, but herbivores do not move within cells.

D. Details

1) Initialisation and input: At the start of each simulation
the cells are created in a two-dimensional matrix of mw width
and mh height. The matrix may or may not have an edge (me).
Each cell is assigned a random producer population chosen
from between zero and the maximum bK value for the cell.
The herbivores are then created and assigned to random cell
addresses. The number of herbivores created is pn, and each
is given an initial resource level of pir.

2) Submodels: The parameter space in which the herbivore
population consistently persists to 2000 time steps of the
model is very large. The parameter set used here was not
intended to represent any specific system, but rather to allow
the herbivore maximum move distance per time step (pmd)
parameter to be increased to over 30 cells without causing
herbivore extinction.

Each cell and herbivore object is processed during each time
step of the simulation: in an individual time step the entire cell
population is processed before the entire herbivore population.

Processing the individuals involves:
Growth of the producer organism
Each cell producer population advances towards the maxi-

mum carrying capacity of the cell (bK) according to the growth
rate of the cell (br) and using the logistic growth model of
classical ecology (see, for example, [1, pages 224-226]. The
logistic growth model used is expressed here as the stepping
function used in the computer code:

Nt+1 = Nt +Ntbr(1−
Nt

bK
) (1)

Where Nt is the biomass at time t. Note that the values of
br and bK are uniform across the matrix in the simulations
reported here.

Herbivore movement
Each herbivore compares its current cell producer popula-

tion with the neighbouring cells and moves to the cell with
the highest effective producer population. This may mean
staying on the current cell. The number of neighbouring cells
considered depends on the herbivore maximum move distance
per time step (pmd). Herbivores are unaware of cells beyond
this distance.

The effective producer population of each candidate cell is
calculated using the actual producer population of the target
cell and related factors: the number of other herbivores already
on the cell (resources are shared equally) and the cost of
moving to the cell (pmvc× the Cartesian distance).

After calculating the effective producer populations on all
target cells, the algorithm uses the pms parameter to randomise
pms% of the calculated effective populations. Using a level
of stochasticity in this way has precedents in the modeling
literature, for example in the fish schooling model of [16].

(a) (b)

(c) (d)
Fig. 1. Screenshots with ten time steps between images (a) to (d) illustrating
an increasing herbivore population consuming the large areas of high producer
density on the lower left of the matrix. The herbivores are represented by
the white cells, the producers by the green cells. The higher the producer
population, the brighter the green of the cell.

Implementation of resource intake—herbivores
The number of producer units consumed by a herbivore

is calculated using ppe and the number of herbivores on the
cell. The cell producer population is reduced accordingly. The
herbivore resource level is increased taking into account pte).

Application of metabolic cost—herbivores
The cost for each herbivore of living one time step is

represented by pmc. This is subtracted from the resource level
carried by each herbivore each time step. Herbivores which
then do not have sufficient resources to live one more time
step (resource level < pmc) die of starvation and are removed
from the simulation.

Implementation of asexual reproduction—herbivores
Any herbivores with sufficient resources to live one more

time step and reproduce (resource level ≥ pmc + prc) will
then produce offspring asexually at a resource cost of prc
per offspring. The new individuals, with the default initial
resource level are placed on the same cell as the parent. This
model was built with two related parameters, pir and prc. In
all simulations reported here, pir = prc.

E. Graphical output

The graphical display includes
• Producer population density: the brightness of each cell

indicates the cell producer population—the brighter the
cell, the closer the population is to the maximum bK
value of the cell.

• Herbivore positions: the white cells indicate the presence
of a herbivore.

Fig. 1 consists of four screenshots of the matrix in sequence.
The dark areas have low producer population and are areas
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(a) (b)

(c) (d)
Fig. 2. Time steps 591, 594, 597 and 600 of a single execution of the
model where pmd = 10 cells. Herding behaviour is evident as the herbivores
consume the resources in the middle and lower middle of the images.

from which the herbivores have recently moved. The brighter
areas have had longer to recover since herbivore grazing, and
are the areas towards which the herbivores are moving.

III. DESCRIPTION OF HERDING BEHAVIOUR

Chivers[3] found that an increase in herding behaviour
is positively correlated with the herbivore maximum move
distance per time step (pmd). To illustrate this, Figs. 2 and 3 are
taken from two simulations with pmd = 10 cells and pmd = 20
cells respectively. These screenshots were taken after many
hundreds of time steps and illustrate well-developed herding
behaviour. The herding is more pronounced in Fig. 3, when
pmd = 20 cells, than in Fig. 2, when pmd = 10 cells.

Herding takes tens, if not hundreds, of time steps to appear.
Fig. 1 illustrates a typical execution of the model early in its
lifespan.

A. Qualitative definition

Chivers[3] defines herding as behaviour with the following
characteristics:

• Herding takes many time steps to appear in any given
simulation.

• Once herding behaviour has commenced in any given
simulation, it is persistent.

• Herding behaviour involves the herbivores moving into
areas of high producer density in herds which can be
many herbivores deep and which do not extend along the
entire front of the areas of high producer density.

IV. DETECTION OF HERDING BEHAVIOUR

A. Visual detection

Herding behaviour was initially detected by watching the
graphical display of the two-dimensional matrix, which is part

(a) (b)

(c) (d)
Fig. 3. Time steps 2133, 2136, 2139 and 2142 of a single execution of the
model where pmd = 20 cells. Herding behaviour is evident as the herbivores
consume resources in the lower left and upper right of the images.

of the graphical user interface of the computer model, using
the above definition. The graphical display of the matrix is
built from a two-dimensional array data structure maintained
in the computer memory during each simulation. Observation
of the graphical display led to the selection of pmd = 4 cells as
the minimum value for the development of herding behaviour.

B. Programmatic detection

The following potential methods of detection of herding are
discussed here:

1) Mean number of neighbours for each herbivore.
2) Mean Hamming2 distance between adjacent rows3.
These methods are based on the assumptions that the mean

number of neighbours of each herbivore will rise as herding
becomes more pronounced and that that the average Hamming
distance between adjacent rows and columns will fall as
herding behaviour becomes more pronounced.

Figs. 4 and 5 illustrate these methods. Fig. 4 illustrates
two separate executions of the model with pmd = 10 cells:
the mean populations, mean number of neighbours and mean
Hamming distances between rows and columns per time
step are graphed. Fig. 5 graphs the same output from two
executions of the model where pmd = 20 cells. These figures
indicate that the mean neighbour and Hamming distance
measures may be positively and negatively correlated with

2The Hamming distance or Hamming norm between two strings (usually
of binary digits) of equal length is the number of positions in which the two
strings differ [7]. For example, the two binary strings 11001100 and 11000000
have a Hamming distance of 2, as they differ in two positions (positions five
and six counting from the left). To use the Hamming distance here as a
measure of herding, cells containing at least one herbivore are given a value
of 1 and cells without a herbivore are given a value of 0.

3The columns display the same patterns (Spearman’s rho values typically
over 0.9).
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Fig. 4. (pmd = 10 cells) Population levels of herbivores and producers over
2000 time steps of two independent executions of the model. The caption in
Fig. 5 describes each individual graph.
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Fig. 5. (pmd = 20 cells) Population levels of herbivores and producers over
2000 time steps of two independent executions of the model. Graphs (a) to
(d) illustrate the first execution, graphs (e) to (h) the second. In graphs (a)
and (e) the red line represents the absolute herbivore population per time step;
the blue line represents the mean producer population or biomass per cell per
time step. Graphs (b) and (f) illustrate the mean number of neighbours for
each herbivore per time step, and graphs (c), (g), (d) and (h) illustrate the
mean row and column Hamming distances per time step.

pmd respectively (herding behaviour, observed in the graphical
display, developed as these simulations progressed but is not
evident in the population levels, graphs (a) and (e) in Figs. 4
and 5).

1) Adjusted measures: The validity of the Hamming dis-
tance as a measure of herding behaviour was threatened by
the changing absolute number of herbivores per time step in
the fixed number of cells of the two-dimensional matrix. Very
high or very low herbivore populations may result in low mean
Hamming distances with or without the presence of herding
behaviour. Similarly, very high populations of herbivores may
result in high mean neighbour scores with or without the
presence of herding behaviour.

To address these threats, an “adjusted” Hamming distance

Predictor R2 Adjusted R2

Hamming row adjusted 0.878 0.878
Hamming row mean 0.8803 0.8803
Mean neighbours 0.8923 0.8923
Mean neighbours adjusted 0.8993 0.8993

TABLE II
BIVARIATE REGRESSION ANALYSES OF FOUR PREDICTORS SORTED BY

ADJUSTED R2 , 1 ≤ pmd ≤ 10.

Predictor R2 Adjusted R2

Hamming row adjusted 0.5382 0.538
Mean neighbours 0.5637 0.5635
Mean neighbours adjusted 0.6232 0.6231
Hamming row mean 0.6756 0.6755

TABLE III
BIVARIATE REGRESSION ANALYSES OF FOUR PREDICTORS SORTED BY

ADJUSTED R2 , 3 ≤ pmd ≤ 5.

was calculated, the quotient of the original measures and the
mean number of herbivores, and an “adjusted” mean number
of neighbours was calculated, the quotient of the original
measures and the mean number of herbivores. These adjusted
measures were analysed in the same way as the raw scores.

V. METHODOLOGY

To test the proposed methods of detecting herding, the
model was executed ten times at each parameter level; 1 ≤
pmd ≤ 10. The data collected are listed below. These data
were collected from time steps 1010–2000 (each tenth time
step) of each simulation as herding behaviour takes up to 1000
time steps to develop in the simulations observed with this
parameter set.

Data collected:
• time step,
• move distance,
• the mean absolute herbivore population per time step,
• the mean producer population or biomass per cell per

time step,
• the mean Hamming distance between adjacent rows per

time step and
• the mean number of neighbours per herbivore per time

step.

A. Data analysis

The R statistical language[12] was used to perform bivariate
regression analyses to determine the strength of each of the
following predictors of herding behaviour:

• mean Hamming distance between adjacent rows and
columns,

• adjusted mean Hamming distance between adjacent rows
and columns,

• mean number of neighbours for each herbivore and
• adjusted mean number of neighbours for each herbivore.

VI. RESULTS

Bivariate regression analyses revealed the mean neighbours
adjusted figure as the strongest individual predictor (R2 =
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0.8993, adjusted R2 = 0.8993) for herding over the range 1 ≤
pmd ≤ 10, this predictor explaining 90% of herding behaviour.
The R2 and adjusted R2 scores for each potential predictor are
listed in Table II and median, Q1 and Q3, range and outliers
are illustrated in Fig. 6.

The threshold for herding behaviour, determined by visual
inspection of the model 2D display, is pmd = 4. Bivariate
regression analyses of potential predictors over the range 3 ≤
pmd ≤ 5 found that the Hamming row mean was the strongest
individual predictor (R2 = 0.6756, adjusted R2 = 0.6755)
for herding, explaining 68% of herding behaviour. The R2

and adjusted R2 scores for each potential predictor in this
parameter range are listed in Table III and median, Q1 and
Q3, range and outliers are illustrated in Fig. 7.

VII. DISCUSSION

In the 1 ≤ pmd ≤ 10 range all four predictors appear
to provide a reasonable indication of herding behaviour. In
the 1 ≤ pmd ≤ 10 range there is less separation between
predictors than in the 3 ≤ pmd ≤ 5 range, however the latter

is more important because the visual threshold for herding
behaviour was at pmd = 4.

In all simulations in which herding behaviour was observed,
the adjusted mean neighbour measure was ≥ 0.00244 and the
mean Hamming distance was ≤ 5.6162, these two predictors
having the highest adjusted R2 values for 1 ≤ pmd ≤ 10
and 3 ≤ pmd ≤ 5 respectively. We propose, therefore, that
with this set of parameters and environment size these two
predictors could be used to detect herding. The model can be
set up to execute in batch mode without the graphical display
as part of a parameter sensitivity analysis. The program code
then could record herding behaviour based on these predictor
levels.

The potential threat to the Hamming row measure was not
realised, the raw predictor more accurate than the adjusted
figure for both pmd ranges. The mean neighbours adjusted
predictor, however, was in both cases a more accurate measure
than the corresponding raw score.

Future research will involve a range of parameter sets and
environment sizes. Important questions include the relative
accuracy of the four measures and a comparison between the
raw and adjusted scores across a wide parameter space.
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